• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microstructure and mechanical properties of sintered (2-4)Mn-(0·6-0·8)C steels

Cias, A., Mitchell, Stephen C., Watts, Andrew, Wronski, Andrew S. January 1999 (has links)
Yes / Mechanical properties of 2-4% manganese PM steels were determined in tension and in bending following laboratory sintering in dry, hydrogen rich atmospheres. Young's modulus determined by an extensometric technique was about 115 GPa; when measured by an ultrasonic method it was about 153 GPa, in accordance with the 'law of mixtures'. The microstructures, significantly devoid of oxide networks, were predominantly pearlitic, but frequently with variability for specimens similarly processed, resulting in appreciable variations in the stresses for macroscopic yielding and fracture. The majority of the experiments were conducted on 3 and 4Mn-0·6C alloys and for these R0·1 was in the range 275-500 MPa, tensile strength (TS) 300-600 MPa, and (apparent) transverse rupture strength (TRS) 640-1260 MPa. Statistical techniques were employed to analyse the data. When careful control of processing was maintained, the Weibull modulus was highest, at about 17, for TS of furnace cooled specimens, and lowest, about 6, for TRS of the rapidly cooled specimens. In order to interpret the significant differences between the TRS and the TS values, both apparently measuring the critical stress for cracking after strains of up to 7%, a two stage normalising technique for TRS was adopted. By taking account of the plastic strains preceding failure, the elastic 'strength of materials' formula was modified to allow true fracture stresses to be calculated. It was also postulated that failure was initiated from a population of flaws of variable size and then the 'normalised' bend strengths, smaller than TRSs, were shown to correspond well with TSs. It is suggested that this combined plasticity correction and Weibull analysis approach, which has a sound scientific basis, should be employed to interpret bend test data in preference to empirical correlations between TS and TRS.

Page generated in 0.1386 seconds