Spelling suggestions: "subject:"manganese boxicity"" "subject:"manganese bioxicity""
1 |
Characterization of a New D-D Neutron Generator System for Neutron Activation of Manganese in Bone In-VivoElizabeth Helen Jaye (12463536) 27 April 2022 (has links)
<p>Neutron Activation Analysis (NAA) is a non-invasive method for assessing the qualitative and quantitative elemental composition of a sample. One application of this technique is in-vivo quantification of specific elements in the human body. An important element in terms of human exposure assessment is Manganese (Mn). Mn is the fourth most usedindustrial metal and can be an inhalation exposure hazard specifically for welders. Over exposure to Mn can lead to neurological degeneration issues similar to Parkinson’s disease. It has been found that bone is a good biomarker for Mnas Mn is deposited in the bone and remains for long periods of time,allowing for an assay to reveal long term exposure information. The method of using NAA to quantify levels of Mn in-vivo using the bones in the human hand is being explored in this work.The NAA system used, involves a deuterium-deuterium neutron generator and an N-type High Purity Germanium Detector. It is critical to have the performance of the entire system characterized using phantoms and cadaver bones before the system can be used for in-vivo measurements. The goal of this work is to determine the neutron yield of the generator system, the neutron and photon dose received by a sample, the detection limit of Mn with this system, and to evaluate the Mn detection capability of the systemusing cadaver bones from occupationally exposed Mn miners. The parameters were determined through a combination of simulation with Monte Carlo N-Particle Code (MCNP), experiments using Mn doped bone phantoms and cadaver bones, and various dosimetry tools such as TLDs and EPDs. The neutron yieldfor the D-D 109M generator wasestimated to be2.24E+09+/-2.15E+07neutrons per secondfor this work. The Mn detection limit for the system was estimatedto be 0.442 ppm. The equivalent dose received by the sampleduring the standard 10-minute irradiation was estimated to be 8.45 +/-2.05rem. The results found for the human cadaver bones weremixed. It was found that the system was able to successfully detect Mn incadaver bones. Unexpectedly, however, three of the samples showed little to no Ca signal.In addition, significant amounts of soft tissue and bone marrow exist in the samples.Thereforethe Mn concentration in the bones was not able to be accurately estimated. A relative metric of Mn concentration was used instead and showed a slight positive increase from the unexposed to exposed samples but was not statistically significant.</p>
|
2 |
In vivo Neutron Activation Analysis System (IVNAA) to Quantify Potassium (K) and Sodium (Na) in Human Body and Small AnimalsSana Tabbassum (10141649) 14 July 2022 (has links)
<p>Elevated blood pressure (BP) is a significant risk factor for cardiovascular diseases (CVD), which are the leading cause of morbidity and mortality. Dietary minerals such as sodium (Na) and potassium (K) play a crucial role in overall health and play a specific function in regulating blood pressure in the human body. Numerous studies have been conducted on the association between blood pressure and dietary intervention. While many nutritional intervention studies have shown adverse effects of excessive Na intake and the beneficial impact of supplemental K in humans, less is understood on Na and K tissue retention and health outcomes of such retention. The most commonly used biomarkers to study Na retention and regulation is urine Na. However, the use of urine Na concentration as an indicator of Na retention has its limitations and has been recently questioned. In-vivo neutron activation analysis (IVNAA) is a unique and powerful technique for elemental analysis in the human body that has the potential to quantify Na and K retention and monitor their bio-kinetics. This research work designed an in vivo neutron irradiation system with high sensitivity and minimal radiation dose to measure Na/K and monitor Na/K bio-kinetics. The system was characterized, tested, and validated for K measurement in mice and rats. Moreover, we developed a methodology for in vivo quantification of Na in pigs in bone and soft tissue after dietary intervention. The project's overall goal is to exploit the potential of a compact DD neutron generator-based neutron activation analysis system for in vivo quantification of Na and K in humans and small animals.</p>
|
Page generated in 0.06 seconds