• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on the role of manganese in nutrition and metabolism

Bentley, Orville G. January 1950 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1950. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
2

EFFECTS OF MANGANESE DEFICIENCY ON DIETARY ADAPTATION OF THE EXOCRINE PANCREAS IN THE RAT (AMYLASE, LIPASE, TRYPSIN, CHYMOTRYPSIN)

Werner, Lisa Anne, 1958- January 1986 (has links)
No description available.
3

Effect of dietary manganese and vitamin E deficiencies on tissue antioxidant status in STZ-diabetic rats

Thompson, Katherine Hirsch January 1991 (has links)
Interactions between manganese (Mn) deficiency and streptozotocin (STZ)-diabetes with respect to tissue antioxidant status were investigated in male, Sprague-Dawley rats. All rats were fed either a Mn-deficient (1 ppm) or a Mn-sufficient (45 ppm) diet for 8 weeks. Diabetes was then induced by tail-vein injection of STZ (60 mg/kg body weight), after which the rats were kept for an additional 4 to 8 weeks. The control groups comprised rats not injected with STZ, which were either Mn-deficient or Mn-sufficient. The Mn-deficient diet decreased the activities of manganese superoxide dismutase (MnSOD) in kidney and heart, and of copper-zinc superoxide dismutase (CuZnSOD) in kidney, in non-diabetic animals. In the diabetic rats, the Mn-deficient diet induced more pronounced decreases in activities of these same enzymes, and also increased liver MnSOD activity. Pancreas weights were significantly lower in Mn-deficient, compared to Mn-sufficient rats. Also, Mn-deficient, diabetic rats were significantly more hyperglycemic in response to a glucose load than Mn-sufficient, suggesting that they may have been more severely diabetic. Surprisingly, plasma and hepatic vitamin E levels increased progressively with the duration of diabetes. Lipid peroxidation, as measured by H₂O₂ -induced production of thiobarbituric acid reactive substances in erythrocytes, plasma lipoperoxides, and renal adipose tissue fluorescence, also increased concomitant with decreased liver and kidney glutathione levels. The effect of vitamin E-deficiency on Mn-deficient, diabetic rats was also investigated. Predictably, vitamin E-deficient rats were almost entirely depleted of plasma and liver vitamin E after 12 weeks on the deficient diets (4 weeks after STZ treatment). Consistent with this, tissue lipid peroxides were elevated compared to vitamin E-sufficient rats. Superimposing vitamin E-deficiency on manganese deficiency failed to add any further deficits in tissue antioxidant status. Higher glycosylated hemoglobin levels were observed in vitamin E-deficient, compared to vitamin E-sufficient, diabetic rats. These findings demonstrate for the first time an interactive effect between manganese deficiency and STZ-diabetes resulting in amplification of tissue antioxidant changes seen with either manganese deficiency or STZ-diabetes alone. This effect of cofactor deprivation in experimental diabetes raises the question of adequacy of the nominally Mn-sufficient diet in insulin-dependent diabetes mellitus. / Land and Food Systems, Faculty of / Graduate
4

Complexed trace mineral supplementation of broiler diets

Saenmahayak, Benya, January 2007 (has links) (PDF)
Thesis (M.S.)--Auburn University, 2007. / Abstract. Vita. Includes bibliographic references.

Page generated in 0.1131 seconds