Spelling suggestions: "subject:"manganese ore."" "subject:"anganese ore.""
31 |
Genesis of karst-hosted manganese ores of the Postmasburg Manganese Field, South Africa with emphasis on evidence for hydrothermal processes / Genesis of karst-hosted manganese ores of the Postmasburg Manganese Field and the implications of related hydrothermal activity, Northern Cape, South AfricaFairey, Brenton John January 2014 (has links)
The Postmasburg Manganese Field (PMF), located in the Northern Cape Province of South Africa, once represented one of the largest sources of manganese ore worldwide. However, the discovery of the giant manganese deposits of the Kalahari Manganese Field (KMF) led to the gradual decline in manganese mining activity in the PMF. Two belts of manganese ore deposits have been distinguished in the PMF, namely the Western Belt of ferruginous manganese ores and the Eastern Belt of siliceous manganese ores. Prevailing models of ore formation in these two belts invoke karstification of manganese-rich dolomites and residual accumulation of manganese wad which later underwent diagenetic and low-grade metamorphic processes. For the most part, the role of hydrothermal processes in ore formation and metasomatic alteration is not addressed. The identification of an abundance of common and some rare Al-, Na-, K- and Ba-bearing minerals, particularly aegirine, albite, microcline, banalsite, sérandite-pectolite, paragonite and natrolite in the PMF ores studied in this thesis, is indicative of the influence of hydrothermal activity. Enrichments in Na, K and/or Ba in the ores are generally on a percentage level for the majority of samples analysed through bulk-rock techniques. The discovery of a Ba-Mn arsenate/vanadate similar to gamagarite may also indicate that the hydrothermal fluid affecting the ores was not only alkali-rich but also probably contained some As and V. The fluid was likely to be oxidized and alkaline in nature and is thought to have been a mature basinal brine. Various replacement textures, particularly of Na- and Krich minerals by Ba-bearing phases, suggest sequential deposition of gangue as well as oreminerals from the hydrothermal fluid, with Ba phases being deposited at a later stage. The stratigraphic variability of the studied ores and the deviation of their character from the pigeon-hole-type classification of ferruginous and siliceous ores in the literature, suggests that a re-evaluation of genetic models is warranted. The discovery of hydrothermallydeposited alkali-rich assemblages in the PMF and KMF provides grounding for further investigation into a possible regional-scale hydrothermal event at least re-constituting the ores. Some shortcomings in previous works include disregard for the highly variable nature of the PMF deposits, the effects of hydrothermal activity of the ores and the existence of stratigraphic discrepancies. This study provides a single, broad model for the development of all manganese deposits of the PMF. The source of metals is attributed to all formations that stratigraphically overly the Reivilo Formation of the Campbellrand Subgroup (including the Reivilo Formation itself). The main process by which metals are accumulated is attributed to karstification of the dolomites. The interaction of oxidized, alkaline brines with the ores is considered and the overlying Asbestos Hills Subgroup BIF is suggested as a potential source of alkali metals.
|
32 |
Economic Geology of the Big Horn Mountains of West-Central ArizonaAllen, George B. January 1985 (has links)
The Big Horn Mountains are a geologically complex range that extends over 500 square km in west-central Arizona. Three major lithologic terranes outcrop: (1) Proterozoic amphibolite, phyllite, schists, gneiss, and granite; (2) Mesozoic monzonite to diorite intrusives; and (3) Cenozoic mafic to silicic volcanic rocks and clastic rocks. The entire area is in the upper plate of a detachment fault and, consequently, contains many low- to high-angle normal faults. Each lithologic terrane has its associated mineral occurrences. The Big Horn district is exclusively hosted in the pre- Tertiary terrane. Most of its mineral occurrences are spatially related to the Late Cretaceous intrusive rocks. One occurrence, the Pump Mine, may be a metamorphic secretion deposit, and therefore, would be middle Proterozoic. The vast majority of the mineral occurrences in the Big Horn Mountains are middle Tertiary in age and occur in three districts: the Tiger Wash barite - fluorite district; the Aguila manganese district; and the Osborne base and precious metal district. Fluid inclusions from Tiger Wash fluorite (T(h) 120 to 210° C, NaCl wt. equivalent 17 to 18 percent not corrected for CO₂) and nearby detachment - fault- hosted Harquahala district fluorite (T(h) 150 to 230° C., NaC1 wt. equivalent 15.5 to 20 percent not corrected for CO₂) suggest cooling and dilution of fluids as they are presumed to evolve from the detachment fault into the upper plate. Mass-balance calculations suggest that the proposed evolution of fluids is sufficient to account for the observed tonnage of barite and fluorite. The Tiger Wash occurrences grade directly into calcite- gangue-dominated manganese oxides of the Aguila district. A wide range of homogenization temperatures (T(h) 200 to 370° C.), an absence of CO₂ and low salinities (NaC1 wt. equivalent 1 to 2 percent) in the Aguila district calcite-hosted fluid inclusions argue for distillation of fluids during boiling or boiling of non saline-meteoric waters. Mass - balance calculations modeling the evolution of Ca and Mn during potassium metasomatism of plagioclase in basalt suggest that little if any influx of these cations is necessary to form the calcite –dominated manganese oxide tonnage observed. The Aguila district grades directly to the east into the base-metal and precious-metal occurrences of the Osborne district. Preliminary data describing geological settings, fluid inclusions, and geochemistry suggest that the Osborne district has a continuum between gold-rich to silver-rich epithermal occurrences. The gold-rich systems have dominantly quartz gangue, with or without fluorite, and are hosted in a variety of rocks, but are proximal to Precambrian phyllite or mid-Tertiary rhyolite. Fluid inclusions from two occurrences representative of the gold -rich systems spread across a minor range (T(h) 190 to 230° C., NaC1 wt. equivalent 17 to 23 percent not corrected for CO₂). Dilution of highly saline fluids is the inferred mechanism for precipitation of gold in the gold-quartz systems. The silver-rich systems have dominantly calcite gangue with or without quartz, and are hosted in mid-Tertiary basalt. Calcite fluid inclusions from a representative high-silver occurrence display a wide range of homogenization temperatures and salinities (T(h) 120 to 370° C., NaC1 wt. equivalent 7 to 23 percent). Boiling and consequent neutralization of acidic solutions is the inferred mechanism for the silver-rich, calcite gangue systems. A model inferring a regional fluid-flow regime and local sources of metals is proposed. Four possible regional and local causes of fluid flow in upper-plate detachment regimes are proposed: (1) regional elevation of geothermal gradients as a result of middle-crustal, lower-plate rocks rising to upper crustal levels; (2) meteoric water recharge along the southeast flank of the Harquahala antiform and consequent displacement of connate waters in the upper-plate of the Big Horn Mountains; (3) local emplacement of feeder stocks to rhyolitic flows; (4) and tilting of major upper-plate structural blocks.
|
Page generated in 0.0521 seconds