Spelling suggestions: "subject:"manifold"" "subject:"mannifold""
1 |
Geometric Seifert 4-manifolds with aspherical basesKemp, M.C. January 2005 (has links)
Seifert fibred 3-manifolds were originally defined and classified by Seifert. Scott gives a survey of results connected with these classical Seifert spaces, in particular he shows they correspond to 3-manifolds having one of six of the eight 3-dimensional geometries (in the sense of Thurston). Essentially, a classical Seifert manifold is a S1-bundle over a 2-orbifold. More generally, a Seifert manifold is the total space of a bundle over a 2-orbifold with flat fibres. It is natural to ask if these generalised Seifert manifolds describe geometries of higher dimension. Ue has considered the geometries of orientable Seifert 4-manifolds (which have general fibre a torus). He proves that (with a finite number of exceptions orientable manifolds of eight of the 4-dimensional geometries are Seifert fibred. However, Seifert manifolds with a hyperbolic base are not necessarily geometric. In this paper, we seek to extend Ue's work to the non-orientable case. Firstly, we will show that Seifert spaces over an aspherical base are determined (up to fibre preserving homeomorphism) by their fundamental group sequence. Furthermore when the base is hyperbolic, a Seifert space is determined (up to fibre preserving homeomorphism) by its fundamental group. This generalises the work of Zieschang, who assumed the base has no reflector curves, the fibre was a torus and that a monodromy of a loop surrounding a cone point is trivial. Then we restrict to the 4 dimensional case and find necessary and sufficient conditions for Seifert 4 manifolds over hyperbolic or Euclidean orbifolds to be geometric in the sense of Thurston. Ue proved that orientable Seifert 4-manifolds with hyperbolic base are geometric if and only if the monodromies are periodic, and we will prove that we can drop the orientable condition. Ue also proved that orientable Seifert 4-manifolds with a Euclidean base are always geometric, and we will again show the orientable assumption is unnecessary.
|
2 |
Geometric Seifert 4-manifolds with aspherical basesKemp, M.C. January 2005 (has links)
Seifert fibred 3-manifolds were originally defined and classified by Seifert. Scott gives a survey of results connected with these classical Seifert spaces, in particular he shows they correspond to 3-manifolds having one of six of the eight 3-dimensional geometries (in the sense of Thurston). Essentially, a classical Seifert manifold is a S1-bundle over a 2-orbifold. More generally, a Seifert manifold is the total space of a bundle over a 2-orbifold with flat fibres. It is natural to ask if these generalised Seifert manifolds describe geometries of higher dimension. Ue has considered the geometries of orientable Seifert 4-manifolds (which have general fibre a torus). He proves that (with a finite number of exceptions orientable manifolds of eight of the 4-dimensional geometries are Seifert fibred. However, Seifert manifolds with a hyperbolic base are not necessarily geometric. In this paper, we seek to extend Ue's work to the non-orientable case. Firstly, we will show that Seifert spaces over an aspherical base are determined (up to fibre preserving homeomorphism) by their fundamental group sequence. Furthermore when the base is hyperbolic, a Seifert space is determined (up to fibre preserving homeomorphism) by its fundamental group. This generalises the work of Zieschang, who assumed the base has no reflector curves, the fibre was a torus and that a monodromy of a loop surrounding a cone point is trivial. Then we restrict to the 4 dimensional case and find necessary and sufficient conditions for Seifert 4 manifolds over hyperbolic or Euclidean orbifolds to be geometric in the sense of Thurston. Ue proved that orientable Seifert 4-manifolds with hyperbolic base are geometric if and only if the monodromies are periodic, and we will prove that we can drop the orientable condition. Ue also proved that orientable Seifert 4-manifolds with a Euclidean base are always geometric, and we will again show the orientable assumption is unnecessary.
|
3 |
The Detection of Ischemic Stroke on the PSD Manifold of EEG SignalsZhang, Canxiu January 2018 (has links)
The study of ischemic brain stroke detection by Electroencephalography (EEG) signal is the area of binary signal classification. In general, this involves extracting features from EEG signal on which the classification is performed. In this thesis, we investi- gate the employment of Power Spectral Density (PSD) matrix, which contains not only power spectrum contents of each signal which complies with what clinical experts use in their visual judgement of EEG signals, but also cross-correlation between multi-channel (electrodes) signals to be studied, as a feature in signal classification. Since the PSD matrices are structurally constrained, they form a manifold in the signal space. Thus, the commonly used Euclidean distance to measure the similarity/dissimilarity between two PSD matrices are not informative or accurate. Riemannian Distance (RD), which measures distance along the surface of the manifold, should be employed to give more meaningful measurements. Furthermore, two classification methods, binary hypothesis testing and K-Nearest Neighbors (KNN), are applied. In order to enhance the detec- tion performance, algorithms to find optimum weighting matrix for each classifier are also applied. Experimental results show that the performance by the kNN method us- ing PSD matrix as features with RD as similarity/dissimilarity measurements are very encouraging. / Thesis / Master of Applied Science (MASc)
|
4 |
Deformation quantisation in singular spacesMaldonado-Mercado, CeÌsar January 2003 (has links)
No description available.
|
5 |
Analysis on manifoldsRoe, J. January 1984 (has links)
No description available.
|
6 |
A Tourist's Account of Characteristic Foliations on Convex Surfaces in 3-D Contact GeometryVolk, Luke 01 October 2019 (has links)
We begin with a rapid introduction to the theory of contact topology, first spending more time than you would probably want on developing the notion of contact manifold before launching right into the thick of the theory. The tools of characteristic foliations and convex surfaces are introduced next, concluding with an overview of Legendrian knots in contact 3-manifolds. Next, we develop a number of lemmas as tools for dealing with characteristic foliations, concluding with some sightseeing with regards to the theory of so-called "movies", allowing a glimpse into the workings of a theorem due to Colin:
Two smoothly isotopic embeddings of S^2 into a tight contact 3-manifold inducing the same characteristic foliation are necessarily contact isotopic.
We finish with an original observation that Colin’s theorem can be used to replace a key step in Eliashberg and Fraser’s classification of topologically trivial knots, thus providing an alternate proof of that result and thereby highlighting the power of the aforementioned theorem. We provide a simplification of this proof using intermediate results we encountered along the way.
|
7 |
Nonlinear Dimensionality Reduction by Manifold UnfoldingKhajehpour Tadavani, Pooyan 18 September 2013 (has links)
Every second, an enormous volume of data is being gathered from various sources and stored in huge data banks. Most of the time, monitoring a data source requires several parallel measurements, which form a high-dimensional sample vector. Due to the curse of dimensionality, applying machine learning methods, that is, studying and analyzing high-dimensional data, could be difficult. The essential task of dimensionality reduction is to faithfully represent a given set of high-dimensional data samples with a few variables. The goal of this thesis is to develop and propose new techniques for handling high-dimensional data, in order to address contemporary demand in machine learning applications.
Most prominent nonlinear dimensionality reduction methods do not explicitly provide a way to handle out-of-samples. The starting point of this thesis is a nonlinear technique, called Embedding by Affine Transformations (EAT), which reduces the dimensionality of out-of-sample data as well. In this method, a convex optimization is solved for estimating a transformation between the high-dimensional input space and the low-dimensional embedding space. To the best of our knowledge, EAT is the only distance-preserving method for nonlinear dimensionality reduction capable of handling out-of-samples.
The second method that we propose is TesseraMap. This method is a scalable extension of EAT. Conceptually, TesseraMap partitions the underlying manifold of data into a set of tesserae and then unfolds it by constructing a tessellation in a low-dimensional subspace of the embedding space. Crucially, the desired tessellation is obtained through solving a small semidefinite program; therefore, this method can efficiently handle tens of thousands of data points in a short time.
The final outcome of this thesis is a novel method in dimensionality reduction called Isometric Patch Alignment (IPA). Intuitively speaking, IPA first considers a number of overlapping flat patches, which cover the underlying manifold of the high-dimensional input data. Then, IPA rearranges the patches and stitches the neighbors together on their overlapping parts. We prove that stitching two neighboring patches aligns them together; thereby, IPA unfolds the underlying manifold of data. Although this method and TesseraMap have similar approaches, IPA is more scalable; it embeds one million data points in only a few minutes. More importantly, unlike EAT and TesseraMap, which unfold the underlying manifold by stretching it, IPA constructs the unfolded manifold through patch alignment. We show this novel approach is advantageous in many cases. In addition, compared to the other well-known dimensionality reduction methods, IPA has several important characteristics; for example, it is noise tolerant, it handles non-uniform samples, and it can embed non-convex manifolds properly.
In addition to these three dimensionality reduction methods, we propose a method for subspace clustering called Low-dimensional Localized Clustering (LDLC). In subspace clustering, data is partitioned into clusters, such that the points of each cluster lie close to a low-dimensional subspace. The unique property of LDLC is that it produces localized clusters on the underlying manifold of data. By conducting several experiments, we show this property is an asset in many machine learning tasks. This method can also be used for local dimensionality reduction. Moreover, LDLC is a suitable tool for forming the tesserae in TesseraMap, and also for creating the patches in IPA.
|
8 |
Verification of a mathematical model for intake manifold designSchwallie, Ambrose Leo January 1972 (has links)
No description available.
|
9 |
Broken Lefschetz fibrations on smooth four-manifoldsWilliams, Jonathan Dunklin 12 October 2010 (has links)
It is known that an arbitrary smooth, oriented four-manifold admits the structure of what is called a broken Lefschetz fibration. Given a broken Lefschetz fibration, there are certain modifications, realized as homotopies of the fibration map, that enable one to construct infinitely many distinct fibrations of the same manifold. The aim of this paper is to prove that these modifications are sufficient to obtain every broken Lefschetz fibration in a given homotopy class of smooth maps. One notable application is that adding an additional projection move generates all broken Lefschetz fibrations, regardless of homotopy class. The paper ends with further applications and open problems. / text
|
10 |
Branched Covering Constructions and the Symplectic Geography ProblemHughes, Mark Clifford January 2008 (has links)
We apply branched covering techniques to construct minimal simply-connected symplectic 4-manifolds with small χ_h values. We also use these constructions to provide an alternate proof that for each s ≥ 0, there exists a positive integer λ(s) such that each pair (j,8j+s) with j ≥ λ(s) is realized as (χ_h(M),c_1^2(M)) for some minimal simply-connected symplectic M. The smallest values of λ(s) currently known to the author are also explicitly computed for
0 ≤ s ≤ 99. Our computations in these cases populate 19 952 points in the (χ,c)-plane not previously realized in the existing literature.
|
Page generated in 0.0556 seconds