Spelling suggestions: "subject:"manifold alignment"" "subject:"mannifold alignment""
1 |
A Geometric Framework for Transfer Learning Using Manifold AlignmentWang, Chang 01 September 2010 (has links)
Many machine learning problems involve dealing with a large amount of high-dimensional data across diverse domains. In addition, annotating or labeling the data is expensive as it involves significant human effort. This dissertation explores a joint solution to both these problems by exploiting the property that high-dimensional data in real-world application domains often lies on a lower-dimensional structure, whose geometry can be modeled as a graph or manifold. In particular, we propose a set of novel manifold-alignment based approaches for transfer learning. The proposed approaches transfer knowledge across different domains by finding low-dimensional embeddings of the datasets to a common latent space, which simultaneously match corresponding instances while preserving local or global geometry of each input dataset. We develop a novel two-step transfer learning method called Procrustes alignment. Procrustes alignment first maps the datasets to low-dimensional latent spaces reflecting their intrinsic geometries and then removes the translational, rotational and scaling components from one set so that the optimal alignment between the two sets can be achieved. This approach can preserve either global geometry or local geometry depending on the dimensionality reduction approach used in the first step. We propose a general one-step manifold alignment framework called manifold projections that can find alignments, both across instances as well as across features, while preserving local domain geometry. We develop and mathematically analyze several extensions of this framework to more challenging situations, including (1) when no correspondences across domains are given; (2) when the global geometry of each input domain needs to be respected; (3) when label information rather than correspondence information is available. A final contribution of this thesis is the study of multiscale methods for manifold alignment. Multiscale alignment automatically generates alignment results at different levels by discovering the shared intrinsic multilevel structures of the given datasets, providing a common representation across all input datasets.
|
2 |
The Acquisition of Vowel Normalization during Early Infancy: Theory and Computational FrameworkPlummer, Andrew R. 02 June 2014 (has links)
No description available.
|
3 |
Structural Similarity: Applications to Object Recognition and ClusteringCurado, Manuel 03 September 2018 (has links)
In this thesis, we propose many developments in the context of Structural Similarity. We address both node (local) similarity and graph (global) similarity. Concerning node similarity, we focus on improving the diffusive process leading to compute this similarity (e.g. Commute Times) by means of modifying or rewiring the structure of the graph (Graph Densification), although some advances in Laplacian-based ranking are also included in this document. Graph Densification is a particular case of what we call graph rewiring, i.e. a novel field (similar to image processing) where input graphs are rewired to be better conditioned for the subsequent pattern recognition tasks (e.g. clustering). In the thesis, we contribute with an scalable an effective method driven by Dirichlet processes. We propose both a completely unsupervised and a semi-supervised approach for Dirichlet densification. We also contribute with new random walkers (Return Random Walks) that are useful structural filters as well as asymmetry detectors in directed brain networks used to make early predictions of Alzheimer's disease (AD). Graph similarity is addressed by means of designing structural information channels as a means of measuring the Mutual Information between graphs. To this end, we first embed the graphs by means of Commute Times. Commute times embeddings have good properties for Delaunay triangulations (the typical representation for Graph Matching in computer vision). This means that these embeddings can act as encoders in the channel as well as decoders (since they are invertible). Consequently, structural noise can be modelled by the deformation introduced in one of the manifolds to fit the other one. This methodology leads to a very high discriminative similarity measure, since the Mutual Information is measured on the manifolds (vectorial domain) through copulas and bypass entropy estimators. This is consistent with the methodology of decoupling the measurement of graph similarity in two steps: a) linearizing the Quadratic Assignment Problem (QAP) by means of the embedding trick, and b) measuring similarity in vector spaces. The QAP problem is also investigated in this thesis. More precisely, we analyze the behaviour of $m$-best Graph Matching methods. These methods usually start by a couple of best solutions and then expand locally the search space by excluding previous clamped variables. The next variable to clamp is usually selected randomly, but we show that this reduces the performance when structural noise arises (outliers). Alternatively, we propose several heuristics for spanning the search space and evaluate all of them, showing that they are usually better than random selection. These heuristics are particularly interesting because they exploit the structure of the affinity matrix. Efficiency is improved as well. Concerning the application domains explored in this thesis we focus on object recognition (graph similarity), clustering (rewiring), compression/decompression of graphs (links with Extremal Graph Theory), 3D shape simplification (sparsification) and early prediction of AD. / Ministerio de Economía, Industria y Competitividad (Referencia TIN2012-32839 BES-2013-064482)
|
Page generated in 0.0735 seconds