• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 141
  • 25
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 256
  • 256
  • 105
  • 79
  • 69
  • 58
  • 45
  • 33
  • 27
  • 23
  • 21
  • 19
  • 18
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Guidance of multiple manipulators for three-dimensional inspection and measurement using touch-trigger probes

Piper, Rex S. January 1983 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1983. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 196-197).
12

Modified paradex theory and hardware implementation of a 6-prismatic-spherical-universal parallel manipulator.

Hopkins, Brian. January 2001 (has links)
Thesis (M.S.)--Ohio University, June, 2001. / Title from PDF t.p.
13

Kinematics and motion planning of a free-floating closed-chain planar manipulator

Garimella, Rao. January 1992 (has links)
Thesis (M.S.)--Ohio University, August, 1992. / Title from PDF t.p.
14

Design and control of a robotic manipulator with an active pneumatic balancing system /

Lee, Kam-fat, Jonathan. January 1992 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1992.
15

Control of modular robotic fingers toward dexterous manipulation with sliding contacts

Grier, Michael Anthony, 1956- January 1989 (has links)
Control and other issues related to the use of modular robotic fingers to perform dexterous manipulation are considered. The specific manipulation strategy to be implemented, which focuses on parts acquisition and takes advantage of sliding contacts which exist between the fingers and the object being manipulated, is described. The results of early implementation efforts are discussed in which a standard individual-actuator PID control approach was used. Problems related to friction and other effects are identified which were encountered in these early efforts. A computed torque control scheme which provides adaptive friction compensation is proposed for future use with the fingers. Results are discussed of simulations performed to help determine if use with the fingers of this proposed approach will improve system tracking performance in the presence of a variety of disturbances like those which will affect the fingers during actual operation. Implications of results for future implementation efforts are discussed.
16

Experimental verification of a model of a two-link flexible, lightweight manipulator

Huggins, James D. 08 1900 (has links)
No description available.
17

On application of vision and manipulator with redunduncy to automatic locating and handling of objects

余永康, Yu, Wing-hong, William. January 1989 (has links)
published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
18

A DECENTRALIZED ADAPTIVE CONTROL SCHEME FOR ROBOTIC MANIPULATORS.

Koenig, Mark A. January 1985 (has links)
No description available.
19

Design and analysis of a new parallel micro-manipulator utilizing bridge amplifier structure and constant force mechanism for precise assembly system

Chen, Xi Gang January 2018 (has links)
University of Macau / Faculty of Science and Technology. / Department of Electromechanical Engineering
20

Closed-form direct position analysis of stewart platform type parallel manipulator.

January 1995 (has links)
by Li Chi Keung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references (leaves 95-100). / Acknowledgements --- p.ii / Abstract --- p.iii / Notations --- p.vii / List of Figures --- p.viii / List of Tables --- p.x / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Serial Manipulator and Parallel Manipulator --- p.1 / Chapter 1.2 --- Literature Overview --- p.4 / Chapter 1.3 --- Objective --- p.10 / Chapter Chapter 2 --- Classification and General Approach / Chapter 2.1 --- Overview --- p.11 / Chapter 2.2 --- Classification of Stewart Platform Type Parallel Manipulators --- p.12 / Chapter 2.3 --- Sub-structures of Stewart Platform Type Mechanism --- p.14 / Chapter 2.3.1 --- Point-Line (PL) Structure --- p.14 / Chapter 2.3.2 --- Point-Body (PB) Structure --- p.16 / Chapter 2.3.3 --- Line-Line (LL) Structure --- p.17 / Chapter 2.3.4 --- Line-Body (LB) Structure --- p.21 / Chapter 2.4 --- Approach for Closed-Form Direct Position Analysis --- p.25 / Chapter 2.4.1 --- DOF of Stewart Platform Type Parallel Mechanism --- p.26 / Chapter 2.4.2 --- DOF of Stewart Platform Type Parallel Mechanism with Disconnected Legs --- p.27 / Chapter 2.4.3 --- Formation of Rotation and Translation Matrices --- p.28 / Chapter 2.4.4 --- Formation of Closure Equations --- p.32 / Chapter 2.4.5 --- Elimination of Variables --- p.33 / Chapter 2.4.6 --- Final Solution --- p.35 / Chapter 2.5 --- Summary --- p.35 / Chapter Chapter 3 --- Case Studies / Chapter 3.1 --- Overview --- p.37 / Chapter 3.2 --- Type 5-5 Case II --- p.38 / Chapter 3.3 --- Type 6-5 --- p.47 / Chapter 3.4 --- Type 6-6 with 4 Collinear Joint Centers on Both Link (type 6-6 (L4L)) --- p.51 / Chapter 3.5 --- Type 6-6 with 4 Collinear Joint Centers on Movable Link (type 6-6 (L4B)) --- p.59 / Chapter 3.6 --- Summary --- p.63 / Chapter Chapter 4 --- Singularity Analysis / Chapter 4.2 --- General Theory --- p.64 / Chapter 4.2.1 --- Multiple Root Configuration --- p.64 / Chapter 4.2.2 --- Special Configuration --- p.66 / Chapter 4.2.3 --- Multiple Root Configuration and Special Configuration --- p.66 / Chapter 4.3 --- Examples --- p.66 / Chapter 4.3.2 --- Special Planar Parallel Manipulator --- p.66 / Chapter 4.3.4 --- Special Stewart Platform Type Parallel Manipulator --- p.71 / Chapter 4.4 --- Summary --- p.74 / Chapter Chapter 5 --- Conclusions and Recommendations for Future Research / Chapter 5.1 --- Conclusions --- p.75 / Chapter 5.2 --- Recommendations for Future Research --- p.77 / Appendices / Chapter A.l --- Direct Position Analysis of P5B Structure --- p.79 / Chapter A.2 --- Analytic Expressions for Symbols of Type 5-5 Case II --- p.82 / Chapter A.3 --- Analytic Expressions for Sybmols of Type 6-6 (L4L) --- p.84 / Chapter A.4 --- Mathematica Scripts for Case Studies in Chapter 3 --- p.85 / Chapter A.4.1 --- Type 5-5 Case II --- p.85 / Chapter A.4.2 --- Type 6-6 with 4 Collinear Joint Centers on Both Link Connected Together --- p.91 / Reference --- p.95

Page generated in 0.047 seconds