• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Decomposition of the Group Algebra of a Hyperoctahedral Group

Tomlin, Drew E 12 1900 (has links)
The descent algebra of a Coxeter group is a subalgebra of the group algebra with interesting representation theoretic properties. For instance, the natural map from the descent algebra of the symmetric group to the character ring is a surjective algebra homomorphism, so the descent algebra implicitly encodes information about the representations of the symmetric group. However, this property does not hold for other Coxeter groups. Moreover, a complete set of primitive idempotents in the descent algebra of the symmetric group leads to a decomposition of the group algebra as a direct sum of induced linear characters of centralizers of conjugacy class representatives. In this dissertation, I consider the hyperoctahedral group. When the descent algebra of a hyperoctahedral group is replaced with a generalization called the Mantaci-Reutenauer algebra, the natural map to the character ring is surjective. In 2008, Bonnafé asked whether a complete set of idempotents in the Mantaci-Reutenauer algebra could lead to a decomposition of the group algebra of the hyperoctahedral group as a direct sum of induced linear characters of centralizers. In this dissertation, I will answer this question positively and go through the construction of the idempotents, conjugacy class representatives, and linear characters required to do so.

Page generated in 0.0453 seconds