• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hotspots and volcanism

Watson, Sarah Penelope January 1991 (has links)
No description available.
2

The evolution of the Snaefell Volcanic Centre, eastern Iceland

Hards, Victoria L. January 1995 (has links)
No description available.
3

Interactions between mantle plumes and mid-ocean ridges : constraints from geophysics, geochemistry, and geodynamical modeling /

Georgen, Jennifer E. January 1900 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2001. / "September 2001." Vita. Page 223 blank. Includes bibliographical references.
4

Observations and implications of spatial complexity in hotspot volcanism

Kundargi, Rohan Kiran 05 November 2016 (has links)
One of the defining characteristics of hotspot volcanism is the presence of a long-lived, linear chain of age-progressive volcanoes created by the movement of the lithosphere over a stationary melting anomaly. However, the spatial distribution of volcanism at hotspots is often complex and highly variable suggesting that the relationship between magma generation and magma transport at hotspots is poorly understood. Here, I present the results of the first systematic quantitative characterization of the spatial distribution of volcanism at oceanic hotspots. In the first study I develop a novel methodology to characterize the across-strike distribution of volcanism at hotspots and apply it to a catalog of 40 oceanic hotpots. I find that only 25% (10/40) of hotspots exhibit the simple single-peak profile predicted by geodynamic models of melt generation in mantle plumes. The remaining 75% (30/40) of hotspots exhibit a dual- or multi-peak pattern. In the second study, I focus on the across-strike distribution of volcanism at the oceanic hotspots that are sourced by a deep-rooted mantle plume. 14 out of the 15 consensus plume-fed hotspots exhibit a dual-peaked across-strike profile. The spacing between these peaks display a strong negative correlation with lithospheric age, in direct contrast to models of inter-volcanic spacing controlled by elastic plate thickness. This relation suggests a different mechanism controls volcanic spacing at plume-fed hotspots. In the third chapter, I investigate variations in the average topographic profiles over time along the two longest and best-constrained oceanic hotspot tracks: Hawaii and Louisville. I find that the dual-peak across-strike profile of volcanism is a persistent feature at the Louisville hotspot over the entire length of the track examined (spanning a period of more than 65 Myr). In contrast, the dual-peak profile of volcanism at Hawaii is only evident along the most recent portion of the track (i.e., over the last 5 Myr). In total, this thesis represents a significant step foreword in the collective understanding of hotspot volcanism, and introduces a new diagnostic tool for analysis of hotspot influenced seafloor topography.
5

Convection and melting processes in a mantle plume under a spreading ridge, with application to the Iceland plume

Ruedas, Thomas. January 1900 (has links)
Thesis (doctoral)--Johann Wolfgang Goethe Universität, 2004. / Includes bibliographical references (p. [270]-299).
6

Seismic anisotropy beneath the southern Puna Plateau

Robinson, Danielle D., Sandvol, Eric Alan, January 2009 (has links)
The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Title from PDF of title page (University of Missouri--Columbia, viewed on December 30, 2009). Thesis advisor: Dr. Eric Sandvol. Includes bibliographical references.
7

Neogene epeirogeny and the Iceland Plume

Poore, Heather Rachel January 2008 (has links)
No description available.
8

The Evolution of the Galapagos Mantle Plume: From Large Igneous Province to Ocean Island Basalt

Trela, Jarek 21 April 2017 (has links)
Mantle plumes are anomalously hot, narrow upwellings of mantle material that originate at the core-mantle boundary. As plumes rise they may form volumetrically large "heads" (~1000 km in diameter) with narrower (~100 km) "tails." Plume head melting is thought to form Large Igneous Provinces (LIPs), vast outpourings of basaltic lava (~106 km3), while plume tail melting forms linear chains of ocean island basalts (OIBs) similar the Emperor-Hawaii Seamount chain. Mantle plume derived melts indicate that these structures sample deep Earth geochemical and lithological heterogeneities. Studying plume-derived lavas can clarify important planetary-scale questions relating to the accretion of the Earth, primordial geochemical reservoirs, the fate of subducted materials, planetary differentiation, and convective mixing. / Ph. D. / Mantle plumes are hot, narrow upwellings of plastically flowing mantle material. These structures are thought to originate at the core-mantle boundary. Because mantle plumes originate in the deep interior of the planet, they are though to sample both primitive materials that are remnants of Earth’s formation as well as recycled crustal materials that have been subducted from the surface into the deep interior of the planet. When mantle plumes near the surface of the planet they begin to partially melt during a process known as adiabatic decompression melting. When these melts cool, they crystallize to form basalts. These rocks and their associated minerals can be studied to determine lava temperatures and pressures of formation. The geologic record suggests that relatively recently mantle plumes cool and eventually become magmatically inactive. In this project, we used the Galapagos plume as a case study to investigate why it has systematically cooled over the last 90 Ma. The Galapagos mantle plume is possibly the oldest active plume and records a 90 Ma volcanic evolution. We studied Galapagos-related lavas and olivine crystals across the entire 90 Ma evolution of the plume to better understand the life-death cycle of mantle plumes. Our data suggest that the plume may be cooling due to an increase in the amount of recycled oceanic crust. Alternatively, a recycled oceanic crust component could have always been present in the source of the plume, though was diluted during high degrees of partial melting when it was hottest at 90 Ma.
9

Observations of transient mantle convection in the North Atlantic Ocean

Parnell-Turner, Ross Ernest January 2014 (has links)
No description available.
10

Vertical motions at the fringes of the Icelandic plume

Schoonman, Charlotte Maria January 2017 (has links)
The Icelandic mantle plume has had a profound influence on the development of the North Atlantic region over its 64 Myr existence. Long-wavelength free-air gravity anomalies and full waveform tomographic studies suggest that the planform of the plume is highly irregular, with up to five fingers of hot asthenosphere radiating away from Iceland beneath the lithospheric plates. Two of these fingers extend beneath the British Isles and southern Scandinavia, where departures from crustal isostatic equilibrium and anomalous uplift have been identified. In this study, the spatial extent of present-day dynamic support associated with the Icelandic plume is investigated using receiver function analysis. Teleseismic events recorded at nine temporary and 59 permanent broadband, three-component seismometer stations are used to calculate 3864 P-to-S crustal receiver functions. The amplitude and arrival time of particular converted phases are assessed, and H-k stacking is applied to estimate bulk crustal properties. Sub-selections of receiver functions are jointly inverted with Rayleigh wave dispersion data to obtain crustal VS profiles at each station. Both inverse- and guided forward modelling techniques are employed, as well as a Bayesian, trans-dimensional algorithm. Moho depths thus obtained are combined with seismic wide-angle and deep reflection data to produce a comprehensive crustal thickness map of northwestern Europe. Moho depth is found to decrease from southeast (37 km) to northwest (26 km) in the British Isles and from northeast (46 km) to southwest (29 km) in Scandinavia, and does not positively correlate with surface elevation. Using an empirical relationship, crustal shear wave velocity profiles are converted to density profiles. Isostatic balances are then used to estimate residual topography at each station, taking into account these novel constraints on crustal density. Areas of significant residual topography are found in the northwestern British Isles (1400 m), southwestern Scandinavia (464 m) and Denmark (620 m), with convective support from the Icelandic plume as its most likely source. Finally, the irregular planform of the Icelandic plume is proposed to be a manifestation of radial viscous fingering due to a Saffman-Taylor instability. This fluid dynamical phenomenon occurs when less viscous fluid is injected into a layer of more viscous fluid. By comparing the thermal and convective characteristics of the plume with experimental and theoretical results, it is shown that viscous fingering could well explain the present-day distribution of plume material.

Page generated in 0.0565 seconds