Spelling suggestions: "subject:"anufacturing process control"" "subject:"amanufacturing process control""
1 |
Structural modelling and control of job-flow in manufacturing systemsOtolorin, O. January 1982 (has links)
No description available.
|
2 |
An investigation into the operation of an Order-Handling-Manufacturing SystemWu, B. January 1988 (has links)
No description available.
|
3 |
Analysis of defects associated with leaks on skid steer loadersImel, Clint J. January 1900 (has links)
Master of Agribusiness / Department of Agricultural Economics / Ted C. Schroeder / The CNH Wichita Product Center has had a chronic leak problem with the Skid Steer Loaders. The objective of this project was to analyze the manufacturing plant leak
data and make improvements to correct the issue. The objective is twofold: 1) to make
process or design improvements on current products produced in the plant and 2) to make
recommendations for future designs to prevent such leak issues from reoccurring. The manufacturing data had to be transformed into usable form and then it was analyzed mostly by utilizing Pareto Charts. The highest six problem leak points were chosen from the manufacturing data. Process changes were implemented on these particular leak joints and the results were analyzed using two proportions hypothesis tests. The process changes reduced the leak rate by an average percent reduction of 86 percent. The process changes implemented will also be applied to other similar joints, and results documented in the future. The future design recommendations made from the analyzed data included the increased use of o-ring face seal connections at certain locations and where possible, reducing the number of joints per machine.
|
4 |
Cycle to Cycle Manufacturing Process ControlHardt, David E., Siu, Tsz-Sin 01 1900 (has links)
Most manufacturing processes produce parts that can only be correctly measured after the process cycle has been completed. Even if in-process measurement and control is possible, it is often too expensive or complex to practically implement. In this paper, a simple control scheme based on output measurement and input change after each processing cycle is proposed. It is shown to reduce the process dynamics to a simple gain with a delay, and reduce the control problem to a SISO discrete time problem. The goal of the controller is to both reduce mean output errors and reduce their variance. In so doing the process capability (e.g. Cpk) can be increased without additional investment in control hardware or in-process sensors. This control system is analyzed for two types of disturbance processes: independent (uncorrelated) and dependent (correlated). For the former the closed-loop control increased the output variance, whereas for the latter it can decrease it significantly. In both cases, proper controller design can reduce the mean error to zero without introducing poor transient performance. These finding were demonstrated by implementing Cycle to Cycle (CtC) control on a simple bending process (uncorrelated disturbance) and on an injection molding process (correlated disturbance). The results followed closely those predicted by the analysis. / Singapore-MIT Alliance (SMA)
|
Page generated in 0.1083 seconds