• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Localiza??o e mapeamento simult?neos de ambientes planos usando vis?o monocular e representa??o h?brida do ambiente

Santana, Andr? Mac?do 11 February 2011 (has links)
Made available in DSpace on 2014-12-17T14:54:56Z (GMT). No. of bitstreams: 1 AndreMS_TESE_1-100.pdf: 5113772 bytes, checksum: 19386f80f787c926c4fb29b85bac4ecf (MD5) Previous issue date: 2011-02-11 / The goal of this work is to propose a SLAM (Simultaneous Localization and Mapping) solution based on Extended Kalman Filter (EKF) in order to make possible a robot navigates along the environment using information from odometry and pre-existing lines on the floor. Initially, a segmentation step is necessary to classify parts of the image in floor or non floor . Then the image processing identifies floor lines and the parameters of these lines are mapped to world using a homography matrix. Finally, the identified lines are used in SLAM as landmarks in order to build a feature map. In parallel, using the corrected robot pose, the uncertainty about the pose and also the part non floor of the image, it is possible to build an occupancy grid map and generate a metric map with the obstacle s description. A greater autonomy for the robot is attained by using the two types of obtained map (the metric map and the features map). Thus, it is possible to run path planning tasks in parallel with localization and mapping. Practical results are presented to validate the proposal / O objetivo desta tese ? apresentar uma t?cnica de SLAM (Localiza??o e Mapeamento Simult?neos) adequada para ambientes planos com linhas presentes no ch?o, de modo a permitir que o rob? navegue no ambiente fundindo informa??es de odometria e de vis?o monocular. Inicialmente, ? feita uma etapa de segmenta??o para classificar as partes da imagem em ch?o e n?o-ch?o . Em seguida, o processadomento de imagem identifica linhas na parte ch?o e os par?metros dessas linhas s?o mapeados para o mundo, usando uma matriz de homografia. Finalmente, as linhas identificadas s?o usadas como marcos no SLAM, para construir um mapa de caracter?sticas. Em paralelo, a pose corrigida do rob?, a incerteza em rela??o ? pose e a parte n?och?o da imagem s?o usadas para construir uma grade de ocupa??o, gerando um mapa m?trico com descri??o dos obst?culos. A utiliza??o simult?nea dos dois tipos de mapa obtidos (m?trico em grade e de caracter?sticas) d? maior autonomia ao rob?, permitindo acrescentar tarefas de planejamento em simult?neo com a localiza??o e mapeamento. Resultados pr?ticos s?o apresentados para validar a proposta

Page generated in 0.0607 seconds