Spelling suggestions: "subject:"marching ono inn time"" "subject:"marching ono iin time""
1 |
Numerical approximations of time domain boundary integral equation for wave propagationAtle, Andreas January 2003 (has links)
<p>Boundary integral equation techniques are useful in thenumerical simulation of scattering problems for wave equations.Their advantage over methods based on partial di.erentialequations comes from the lack of phase errors in the wavepropagation and from the fact that only the boundary of thescattering object needs to be discretized. Boundary integraltechniques are often applied in frequency domain but recentlyseveral time domain integral equation methods are beingdeveloped.</p><p>We study time domain integral equation methods for thescalar wave equation with a Galerkin discretization of twodi.erent integral formulations for a Dirichlet scatterer. The.rst method uses the Kirchho. formula for the solution of thescalar wave equation. The method is prone to get unstable modesand the method is stabilized using an averaging .lter on thesolution. The second method uses the integral formulations forthe Helmholtz equation in frequency domain, and this method isstable. The Galerkin formulation for a Neumann scattererarising from Helmholtz equation is implemented, but isunstable.</p><p>In the discretizations, integrals are evaluated overtriangles, sectors, segments and circles. Integrals areevaluated analytically and in some cases numerically. Singularintegrands are made .nite, using the Du.y transform.</p><p>The Galerkin discretizations uses constant basis functionsin time and nodal linear elements in space. Numericalcomputations verify that the Dirichlet methods are stable, .rstorder accurate in time and second order accurate in space.Tests are performed with a point source illuminating a plateand a plane wave illuminating a sphere.</p><p>We investigate the On Surface Radiation Condition, which canbe used as a medium to high frequency approximation of theKirchho. formula, for both Dirichlet and Neumann scatterers.Numerical computations are done for a Dirichlet scatterer.</p>
|
2 |
Numerical errors and accuracy-efficiency tradeoff in frequency and time-domain integral equation solversKaur, Guneet 14 February 2011 (has links)
This thesis presents a detailed study of the numerical errors and the associated accuracy-efficiency tradeoffs encountered in the solution of frequency- and time-domain integral equations. For frequency-domain integral equations, the potential integrals contain singular Green’s function kernels and the resulting singular and near-singular integrals must be carefully evaluated, using singularity extraction or cancellation techniques, to ensure the accuracy of the method-of-moments impedance matrix elements. This thesis presents a practical approach based on the progressive Gauss-Patterson quadrature rules for implementing the radial-angular-transform singularity-cancellation method such that all singular and near-singular integrals are evaluated to an arbitrary pre-specified accuracy. Numerical results for various scattering problems in the high- and low-frequency regimes are presented to quantify the efficiency of the method and contrast it to the singularity extraction method. For time-domain integral equations, the singular Green’s function kernels are functions of space and time and sub-domain temporal basis functions rather than entire-domain sinusoidal/Fourier basis functions are used to represent the time variation of currents/fields. This thesis also investigates the accuracy-efficiency tradeoff encountered when choosing sub-domain temporal basis functions by contrasting two prototypical ones: The causal piecewise polynomial interpolatory functions, sometimes called shifted Lagrange interpolants, and the band-limited interpolatory functions based on approximate prolate spheroidal wave functions. It is observed that the former is more efficient for low to moderate accuracy levels and the latter achieves higher, but extrapolation-limited, accuracy levels. / text
|
3 |
Numerical approximations of time domain boundary integral equation for wave propagationAtle, Andreas January 2003 (has links)
Boundary integral equation techniques are useful in thenumerical simulation of scattering problems for wave equations.Their advantage over methods based on partial di.erentialequations comes from the lack of phase errors in the wavepropagation and from the fact that only the boundary of thescattering object needs to be discretized. Boundary integraltechniques are often applied in frequency domain but recentlyseveral time domain integral equation methods are beingdeveloped. We study time domain integral equation methods for thescalar wave equation with a Galerkin discretization of twodi.erent integral formulations for a Dirichlet scatterer. The.rst method uses the Kirchho. formula for the solution of thescalar wave equation. The method is prone to get unstable modesand the method is stabilized using an averaging .lter on thesolution. The second method uses the integral formulations forthe Helmholtz equation in frequency domain, and this method isstable. The Galerkin formulation for a Neumann scattererarising from Helmholtz equation is implemented, but isunstable. In the discretizations, integrals are evaluated overtriangles, sectors, segments and circles. Integrals areevaluated analytically and in some cases numerically. Singularintegrands are made .nite, using the Du.y transform. The Galerkin discretizations uses constant basis functionsin time and nodal linear elements in space. Numericalcomputations verify that the Dirichlet methods are stable, .rstorder accurate in time and second order accurate in space.Tests are performed with a point source illuminating a plateand a plane wave illuminating a sphere. We investigate the On Surface Radiation Condition, which canbe used as a medium to high frequency approximation of theKirchho. formula, for both Dirichlet and Neumann scatterers.Numerical computations are done for a Dirichlet scatterer. / NR 20140805
|
4 |
Approximations of Integral Equations for WaveScatteringAtle, Andreas January 2006 (has links)
<p>Wave scattering is the phenomenon in which a wave field interacts with physical objects. An incoming wave is scattered at the surface of the object and a scattered wave is produced. Common practical cases are acoustic, electromagnetic and elastic wave scattering. The numerical simulation of the scattering process is important, for example, in noise control, antenna design, prediction of radar cross sections and nondestructive testing.</p><p>Important classes of numerical methods for accurate simulation of scattering are based on integral representations of the wave fields and theses representations require the knowledge of potentials on the surfaces of the scattering objects. The potential is typically computed by a numerical approximation of an integral equation that is defined on the surface. We first develop such numerical methods in time domain for the scalar wave equation. The efficiency of the techniques are improved by analytic quadrature and in some cases by local approximation of the potential.</p><p>Most scattering simulations are done for harmonic or single frequency waves. In the electromagnetic case the corresponding integral equation method is called the method of moments. This numerical approximation is computationally very costly for high frequency waves. A simplification is suggested by physical optics, which directly gives an approximation of the potential without the solution of an integral equation. Physical optics is however only accurate for very high frequencies.</p><p>In this thesis we improve the accuracy in the physical optics approximation of scalar waves by basing the computation of the potential on the theory of radiation boundary conditions. This theory describes the local coupling of derivatives in the wave field and if it is applied at the surface of the scattering object it generates an expression for the unknown potential. The full wave field is then computed as for other integral equation methods.</p><p>The new numerical techniques are analyzed mathematically and their efficiency is established in a sequence of numerical experiments. The new on surface radiation conditions give, for example, substantial improvement in the estimation of the scattered waves in the acoustic case. This numerical experiment corresponds to radar cross-section estimation in the electromagnetic case.</p>
|
5 |
Approximations of Integral Equations for WaveScatteringAtle, Andreas January 2006 (has links)
Wave scattering is the phenomenon in which a wave field interacts with physical objects. An incoming wave is scattered at the surface of the object and a scattered wave is produced. Common practical cases are acoustic, electromagnetic and elastic wave scattering. The numerical simulation of the scattering process is important, for example, in noise control, antenna design, prediction of radar cross sections and nondestructive testing. Important classes of numerical methods for accurate simulation of scattering are based on integral representations of the wave fields and theses representations require the knowledge of potentials on the surfaces of the scattering objects. The potential is typically computed by a numerical approximation of an integral equation that is defined on the surface. We first develop such numerical methods in time domain for the scalar wave equation. The efficiency of the techniques are improved by analytic quadrature and in some cases by local approximation of the potential. Most scattering simulations are done for harmonic or single frequency waves. In the electromagnetic case the corresponding integral equation method is called the method of moments. This numerical approximation is computationally very costly for high frequency waves. A simplification is suggested by physical optics, which directly gives an approximation of the potential without the solution of an integral equation. Physical optics is however only accurate for very high frequencies. In this thesis we improve the accuracy in the physical optics approximation of scalar waves by basing the computation of the potential on the theory of radiation boundary conditions. This theory describes the local coupling of derivatives in the wave field and if it is applied at the surface of the scattering object it generates an expression for the unknown potential. The full wave field is then computed as for other integral equation methods. The new numerical techniques are analyzed mathematically and their efficiency is established in a sequence of numerical experiments. The new on surface radiation conditions give, for example, substantial improvement in the estimation of the scattered waves in the acoustic case. This numerical experiment corresponds to radar cross-section estimation in the electromagnetic case.
|
6 |
Transient Analysis of Electromagnetic and Acoustic Scattering using Second-kind Surface Integral EquationsChen, Rui 04 1900 (has links)
Time-domain methods are preferred over their frequency-domain counterparts for solving acoustic and electromagnetic scattering problems since they can produce wide- band data from a single simulation. Among the time-domain methods, time-domain surface integral equation solvers have recently found widespread use because they offer several benefits over differential equation solvers.
This dissertation develops several second-kind surface integral equation solvers for analyzing transient acoustic scattering from rigid and penetrable objects and transient electromagnetic scattering from perfect electrically conducting and dielectric objects.
For acoustically rigid, perfect electrically conducting, and dielectric scatterers, fully explicit marching-on-in-time schemes are developed for solving time domain Kirchhoff, magnetic field, and scalar potential integral equations, respectively. The unknown quantity (e.g., velocity potential, electric current, or scalar potential) on the scatterer surface is discretized using a higher-order method in space and Lagrange interpolation in time. The resulting system is cast in the form of an ordinary differen- tial equation and integrated in time using a predictor-corrector scheme to obtain the unknown expansion coefficients. The explicit scheme can use the same time step size as its implicit counterpart without sacrificing from the stability of the solution and is much faster under low-frequency excitation (i.e., for large time step size). In addition, low-frequency behavior of vector potential integral equations for perfect electrically conducting scatterers is also investigated in this dissertation.
For acoustically penetrable scatterers, presence of spurious interior resonance
modes in the solutions of two forms of time domain surface integral equations is investigated. Numerical results demonstrate that the solution of the form that is widely used in the literature is corrupted by the interior resonance modes. But, the amplitude of these modes in the time domain can be suppressed by increasing the accuracy of discretization especially in time. On the other hand, the proposed one in the combined form shows a resonance-free performance verified via numerical experiments.
In addition to providing detailed formulations of these solvers, the dissertation presents numerical examples, which demonstrate the solvers’ accuracy, efficiency, and applicability in real-life scenarios.
|
Page generated in 0.1051 seconds