• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 1
  • Tagged with
  • 25
  • 25
  • 23
  • 23
  • 20
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geometry and Kinematics of Breaking Waves

Lader, Pål Furset January 2002 (has links)
<p>The objective of this thesis is to experimentally study different breaking waves cases. This is done by measuring in detail the free surface geometry and the internal kinematics of the waves as they approach breaking. Three principal wave cases were chosen for the study: A plunging breaker, a spilling breaker, and an intermediate breaker.</p><p>A major part of this work is the design, construction and building of a wave laboratory. The laboratory contains a glass wall waveflume which is 13.5m long, 1m deep and 0.6m wide, as well as equipment for measuring both the wave kinematics and geometry optically. The wave kinematics is measured using the Particle Image Velocimetry (PIV) method, while the wave profile geometry is measured using image analysis (space domain geometry), as well as standard wave gauges (time domain geometry).</p><p>The analysis of both the wave kinematics and geometry is done using parameters describing quantitatively important features in the wave evolution. The surface geometry is described using the commonly known zero-downcross parameters, and in addition, new parameters are suggested and used in the study, The kinematics are described by a set of four parameters suggested for the first time in this work. These parameters are: Velocity at the surface, velocity at the still water line (z = 0), mean velocity direction, and local wave number. The purpose of these parameters is to give a better understanding of the space and time domain development of the kinematics, and they appear to be a reasonable compromise between simplicity and accuracy.</p><p>The results presented here represents a thorough and detailed mapping of the breaking process. Much data is gathered and analysed, and throughout this thesis it is sought to present the data in the most intuitive way, so that other investigations may benefit from it. </p>
2

Geometry and Kinematics of Breaking Waves

Lader, Pål Furset January 2002 (has links)
The objective of this thesis is to experimentally study different breaking waves cases. This is done by measuring in detail the free surface geometry and the internal kinematics of the waves as they approach breaking. Three principal wave cases were chosen for the study: A plunging breaker, a spilling breaker, and an intermediate breaker. A major part of this work is the design, construction and building of a wave laboratory. The laboratory contains a glass wall waveflume which is 13.5m long, 1m deep and 0.6m wide, as well as equipment for measuring both the wave kinematics and geometry optically. The wave kinematics is measured using the Particle Image Velocimetry (PIV) method, while the wave profile geometry is measured using image analysis (space domain geometry), as well as standard wave gauges (time domain geometry). The analysis of both the wave kinematics and geometry is done using parameters describing quantitatively important features in the wave evolution. The surface geometry is described using the commonly known zero-downcross parameters, and in addition, new parameters are suggested and used in the study, The kinematics are described by a set of four parameters suggested for the first time in this work. These parameters are: Velocity at the surface, velocity at the still water line (z = 0), mean velocity direction, and local wave number. The purpose of these parameters is to give a better understanding of the space and time domain development of the kinematics, and they appear to be a reasonable compromise between simplicity and accuracy. The results presented here represents a thorough and detailed mapping of the breaking process. Much data is gathered and analysed, and throughout this thesis it is sought to present the data in the most intuitive way, so that other investigations may benefit from it.
3

Vortex Induced Vibrations of Marine Risers

Knardahl, Geir Magnus January 2012 (has links)
SummaryThis Master&#146;s Thesis goal is to present fundamental physical aspects of Vortex Induced Vibrations (VIV) of marine risers, and outline methods for suppression of VIV. Main emphasis has been given to the use of strakes, and relevant theories connected to strakes&#146; influence on excitation of riser, riser response and drag is presented. Variation of outer diameter of the riser is also studied.The theory has been put to test through case studies of two Aker Solutions in-marine workover systems of 321 and 1300 m water depth. The computer program VIVANA has been used. Several analyses have been performed for various different riser configurations. For the 321 m water system, the following configurations have been studied:-Base configuration, i.e. no use of strakes-Staggered configuration, staggered bare and buoyant joints-Bottom strakes configuration, bottom section of riser covered with strakes-Middle strakes configuration, middle section of riser covered with strakes-Top strakes configuration, top section of riser covered with strakesFor the 1300 m water depth system, the following configurations have been evaluated:-Base configuration, i.e. no use of strakes-Staggered configuration, staggered bare and buoyant joints-Middle strakes configuration, middle section of riser covered with strakes-Top 50_150 strakes configuration, top 150 m of riser bare, then coverage of strakes-Top stakes configuration, top section of riser covered with strakesFor each water depth a total of 4 different current profiles have been applied. The current profiles include both measured current profiles from the relevant oil fields, as well as several other more &#147;theoretical&#148; current models.The main findings from the 321 m analyses were:-Staggered configuration gives generally lower VIV amplitudes of the dominating frequency compared to base configuration.-Staggered configuration gives generally lower maximum stress amplitudes compared to base configuration.-No clear trends when comparing fatigue life of staggered and base configuration are found, however significantly better fatigue results found for the staggered configuration in measured current.-Maximum accumulated damage is located at the WH/XMT interface.-Top and middle strakes configurations give best VIV suppression results.-Applying strakes to the top section of the riser gives significantly lower VIV amplitudes, stress amplitudes and higher fatigue lives across all current profiles.-Top strakes configuration supress VIV completely for the sheared current profile.-Very small riser deflections and corresponding low flex joint angles are found; thus no operational consequences for the 321 m water depth.&amp;#8195;The main findings from the 1300 m analyses were:-A significant increase in active response frequencies compared to the 321 m water depth, more than 30 active frequencies calculated.-No clear trends in VIV amplitudes of the dominating frequency when comparing staggered and base configuration.-Highest stress amplitudes found for the base configuration in all current profiles.-No clear trends in calculated fatigue life when comparing the staggered and base configurations. Maximum accumulated damage found in the WH/BOP interface.-Top 50_150 strakes configuration the most efficient in suppressing VIV.-Significantly lower VIV amplitudes of the dominating response frequency for the top 50_150 strakes configuration. Same result found for the maximum stress amplitudes.-Compared to the base configuration significantly better fatigue lives found for the top 50_150 strakes configuration, however for the measured current profile an increase of only 1 decade was found.-Staggered configuration gives lowest static riser deflection for all current profiles, also after drag amplification from VIV.-Percentage increase in riser deflection from VIV reduced by roughly 80% when comparing the top 50_150 base configuration to the base configuration.-LFJ angles exceeded lower limits for certain drilling and workover operations, however applying the top 50_150 strakes configuration will generally give a larger operational window compared to the base configuration.Some of the results from the 1300 m analyses revealed certain discrepancies linked to the dominating frequencies and frequencies inducing maximum stress amplitudes. These inconsistencies are probably related to the convergence limit given as input in the VIVANA module.
4

Sea State Limitations for the Deployment of Subsea Compression Station Modules

Roti, Ingvild January 2012 (has links)
Deployment of a large box structure in many sea states has been investigated. Two deployment methods are compared; crane installation over the side and through moonpool installation. The structure is 12 [m] long, 6 [m] wide and 12 [m] high with a mass of 250 [t]. Normand Subsea is used as installation vessel. Both JONSWAP and Torsethaugen wave spectra are used for crane lowering while only JONSWAP is used for moonpool installation.Splash zone lowering is seen as the most critical stage of the installation because hydrodynamic forces are largest at the surface. Hydrodynamic uplift is assumed limiting for the deployment, i.e &#147;slack slings&#148;. Slings are the lower part of the lift rigging. The operation limit is that dynamic uplift should not exceed 90 % of the modules static weight. Forces in z-direction are hence most interesting. Minimum wire tension for the lowering is therefore calculated at two time instances; when the module bottom end is at mean water level and when the module is fully submerged with its top end 0.5 [m] below mean water level. These time instances are referred to as time instance 1 and 2 in the report respectively. Design significant wave heights, Hs, are taken from plots of minimum wire tension for different wave peak periods Tp and wave headings. Based on these design Hs values, which equals the operation limits, operability rosettes are plotted. It is seen that wave headings 90&amp;#8304; and 120&amp;#8304; are most critical with lowest operability for crane installation while wave heading 90&amp;#8304; is worst for moonpool deployment.The lowest design Hs for all Tp values considering wave headings 0&amp;#8304; &#177;30&amp;#8304; is used as overall operation limit for deployment when weather window statistics are computed. Time instance 1 is worst for crane deployment with resulting forecasted weather operational criterion Hs=2.8 [m]. Time instance 2 is worst for moonpool deployment with forecasted operational criterion Hs=2.5 [m] and Tp &amp;#8805; 13.0 [s]. Reference time for deployment, hence the time needed from the weather forecast is issued to the module is landed on the seabed, is 6 hours. Based on reference time and forecasted operation limits weather window statistics are estimated.Moonpool deployment annual operability is 7.24 days, hence 2.0 % of the year, and can naturally not be used. Crane deployment annual operability is 213.22 days, 58.4 % of the year. This is much better but still not very good as it is theoretically desirable to be able to install the module any day year round.
5

Octabuoy Concept and Spar Buoys: Non Linear Effects and Analysis

Dahl, Line J.C. Haakenaasen January 2012 (has links)
The age of the easy accessible hydrocarbon goes towards the end and new more challenging fields is the future of the oil industry. This is often synonymous with large depths where sea bed mounted platforms are highly uneconomical options. Floating platforms are therefore commonly chosen solutions.In this thesis two types of deep foating platforms are investigated; The spar buoy, a well known, well documented concept and the Octabuoy, a newly developed concept. Both platforms are analysed in two DNV programs, Wasim and Waqum. Wasim is a non linear time domain hydrodynamic program and Waqum is an impulse response function operator with the possibility of adding non linear eects. The spar bouy concept is used as a pilot test in the softwares. A recreation of the experimental results from H.A. Haslum&apos;s doctoral thesis from 2000 is attempted. The impact of non linear effects and mooring on both platforms is discussed. The subject of viscous damping is also approached.As has previously been confirmed by many researchers, the spar buoy is susceptible to non linear eects. The triggering of the Mathieu effect is shown in the Wasim analyses. Discussion is also made as to whether the spar might also be susceptible to large excitations due to second order difference frequency interactions between surface waves and body motions. Both these effects happen at low frequencies where radiation damping is low. Viscous damping is therefore of importance. From previous research mooring is found to be important to avoid the Mathieu effect by increasing the damping and moving pitch periods out of the danger zones.After analysing the spar buoy, the Octabuoy&apos;s motion characteristics are tested in mild to severe sea states in both softwares. Non linear effects are found to be significant in the vertical rotational degrees of freedom. The heave motion however seems relatively unaffected by non linear effects. Since Wasim models the free surface linearly, what makes the pitch/roll motion affected by non linearities is found to be either non linear hydro statics or non linear Froude-Krylov forces. The Octabuoy is designed to avoid the variation on hydrostatic stiffness. However, the deadrise angle is 10 degrees larger than the ideal angle. Whether this is what leads to non linear pitch/roll motion is not known at this stage.Two softwares are used in the thesis. Wasim has very long CPU time but calculates accurately and detailed information is easily accessed with for instance the Wasim application ForceInspector. Waqum is very quick, with CPU time in the order of minutes. The program requires an experienced user who knows what must be included for a complete analysis. There are uncertainties about the results from Waqum analysis and more verication is needed for the author to feel confident about the software.To conclude, the programs might work well together. Much can be tested quickly in Waqum, and then final configurations can be run more thoroughly in Wasim. It is the experience of the author that at least until the new version of HydroD is finished, running time domain analysis in Wasim should be done through scripting. This gives a larger control over the actual input and might decrease the chance for error.Keywords: Octabuoy, Spar Buoy, Non Linear Effects, Mooring, Wasim, Waqum.
6

Development of an Oil Production Platform for Year-Round Operation in the Beaufort Sea

Lohne, Roar Christian Håversen January 2012 (has links)
Due to high expectancy of hydrocarbon resources in the Beaufort Sea itis seen as an important area for energy in the future. As the focus nowis shifting towards the deeper parts of the sea, there is a need for floatingproduction platforms that are able to operate year-round in the harsh con-ditions of the Beaufort Sea. In this Master&#146;s thesis the design of such aplatform is performed, with respect to global ice loads acting on the plat-form and the capacity of the stationkeeping system. This is used to analysethe operability of the platform.To be able to develop a floating production platform it is crucial to haveinformation on ice conditions in the Beaufort Sea. Literature has been usedto determine ice conditions in the seasonal transitional zone, where it isexpected that the platform will operate. Factors such as level ice, first-year and multi-year ridge dimensions, floe size and ice island mass havebeen defined. These define some of the most common ice conditions in theBeaufort Sea, and as such represent ice conditions a platform can expect tomeet.Functional specifications have been used to determine the most appropriateplatform type. Several platform types were considered based on factorssuch as production and storage, ice loads, and ice interaction with risersand mooring lines. A circular FPSO was selected due to its insensitivity toice drift direction. To reduce ice loading, the platform was designed as adownward sloping cone.Ice loads on the platform have been calculated using several methods com-monly applied in literature. Results show that managed ice yields lowestloads, followed by level ice. Higher loads are seen for ridges, both first-yearand multi-year, and large ice floes.A water depth of 500 m was assumed for the location of the platform. Since this can be considered as a moderate water depth, a conventional mooring system was selected for stationkeeping. The system has 24 mooring lines connected to a buoy, which again connects to the turret on the platform. Internal mooring was seen as necessary to protect mooring lines from ice. Restoring coefficients have been determined using the inelastic catenary equations. Maximum allowable horizontal displacement is defined as 5 % of the water depth. This is used to determine the maximum allowablehorizontal load on the platform to be 53.38 MN.Lastly, the operability of the platform was judged by comparing various iceloads to the maximum allowable load given by the mooring system. Icemanagement is clearly needed when operating in any ice other than levelice. The requirements of the ice management system has been defined, anda general analysis of the primary and secondary objectives of the ice man-agement system has been performed. It is proposed to use one icebreakerthroughout the year, since the platform may encounter multi-year ice floesduring the summer. As the ice season starts an additional ice breaker isintroduced. In severe ice conditions it may be necessary with a third icebreaker. It is concluded that if proper ice management is ensured, the plat-form should be able to operate year-round.
7

Numerical Simulation of Flow Around Remotely Operated Vehicle (ROV)

Skorpa, Steinar January 2012 (has links)
Computational Fluid Dynamics (CFD) have been applied for numerical simulations of the flow around simplified shapes of a Remotely Operated Vehicle (ROV). The simulations have been carried out at Re = 850 000, which coincides with a free stream velocity of one knot in seawater conditions. Detached Eddy Simulation (DES) have been used with the k-w SST turbulence model in the near-wall (unsteady RANS) regions. The CFD code FLUENT from ANSYS Inc. have been used.The first case to be investigated, was a fully submerged rectangular stationary cube with both sharp and rounded edges. The sharp edged case showed good agreement with published reference values. The results for the refined mesh gave Cd = 0.8192, Clrms = 0.0473 and St = 0.1132. The Strouhal number was identical for both meshes, while small discrepancies were seen on the mean drag and the root mean square lift coefficient. For the round edged case, the mean drag coefficient was shown to be about 25% of the sharp edged case (Cd = 0.2257). The lift was more difficult to model correct and large discrepancies were seen both on the Strouhal number and the root mean square lift coefficient. It was concluded that longer time series were needed in addition to further mesh refinement in order to get more stable mean quantities of the lift history. Some effort were also made on trying the realizable k-e turbulence model in the near-wall regions for the round edged case, but without noticeably effect on the results. For both the sharp edged case and the round edged case it was concluded that although the drag was successfully modeled, a further mesh refinement was needed in order to ensure converged results.For the case of the simplified model of the ROV, three meshes were used for the grid convergence study. Small discrepancies were seen, between 2% and 6.2%. The pitch moment through the Center of Gravity (COG) was also measured and a negative mean value of Cm = -0.2563 was obtained. This means that the reported instability for the ROV was also seen in the simplified model. Through a more detailed study of the pressure and velocity distributions, the main problem regions were identified to be above the forward top and below the aft bottom. Here high-velocity regions generate low-pressure regions, which coincides with a negative pitch moment. One proposed solution was the removal of the plate in the aft which span the width of the ROV. The effect of this solution was however found to be questionable. This is due to the components which are placed in front of the plate, and these may actually cause the same effect. For this reason, these components should be relocated.It was concluded that there should be performed numerical simulations without the plate and the components in front included. The effect of these components could then be studied and a decision on whether to remove the plate could be made. Also, numerical simulations where different locations for the components in front of the plate are tried should be an interesting case to run with respect to the stability analysis.
8

Parameter Sensitivity of Short-term Fatigue Damage of Spar-type Wind Turbine Tower

Moy, Inge January 2012 (has links)
The World&#146;s energy demand is rapidly increasing and a good viable renewable energy source is wind power. The land-based knowledge and experience the onshore wind turbine industry possess is used to develop offshore wind turbines. With this knowledge together with the experience and knowledge of the marine industry we can design and produce a floating wind turbine. The main advantages of an offshore wind turbine are that the wind is stronger and less turbulent at sea, visual and noise annoyances can be avoided and there are large available areas at sea. In this thesis coupled time domain analyses of a floating spar-type wind turbine are performed with the intension to study parameters affecting fatigue damage at base of the tower. The software applied is SIMO/Riflex with the extension TDHmill, which gives the wind thrust force and gyro moment on the wind turbine as point loads in the tower top. Short term environment conditions are chosen from a joint distribution of simultaneous wind and waves which is based on measurements from a site in the North Sea in the period 1973 &#150; 1999. In total 141 different environmental conditions are chosen for the sensitivity study. Mean value, standard deviation, skewness and kurtosis are calculated for axial stresses at the base of the tower. Fatigue damage is calculated from the Palmgren-Miner sum with a nominal stress SN-curve from the DNV fatigue standard. The axial stress-cycle distribution used in the Palmgren-Miner sum is found by rainflow counting. Time domain simulations are carried out for the different sea states and fatigue damage is calculated for each case. The statistical properties and fatigue damage are averaged over seven samples with different random seed number to ensure acceptable statistical uncertainty. Accumulated standard deviation shows that 5 samples of each load case are sufficient to ensure acceptable statistical uncertainty. Sensitivity study of different simulation length shows that 30 minute simulations give close to equal fatigue damage and standard deviation as 2.5 hour simulations. Sensitivity of fatigue to wave height and peak period is carried out to study the effect of varying parameters. This study suggests that the highest waves dominate the fatigue damage for the smallest peak periods. For some small wave heights the damage will be constant for a given peak period range. From this sensitivity study it is shown that if the deviation of fatigue damage between the different load cases is small, then the dominating load case of the accumulated long term fatigue damage will be dominated by the marginal probability of each load case.
9

Verifying and Validation of a Manoeuvring Model for NTNU's Research Vessel R/V Gunnerus

Tjøswold, Sissel January 2012 (has links)
MARINTEK&apos;s ship motion simulation program SIMAN (ShipX manoeuvring module) is used to develop a ship motion model for NTNU&apos;s research vessel R/V Gunnerus. SIMAN uses a 3-DOF linear mathematical model to describe the vessel&apos;s motions. In order to verify the SIMAN model of R/V Gunnerus, full-scale trials of R/V Gunnerus were performed in deep water in Trondheimsfjorden. Turning circles, zig-zag- and stopping tests were carried out and analysed. Data was recorded using Seapath and the DP-system installed on R/V Gunnerus. Seapath registered data at 200 Hz, while the DP-system registered data at 1 Hz. Data registration at 1 Hz turned out to be too seldom, especially for the zig-zag manoeuvres.Full-scale trials are simulated in SIMAN. Measured full-scale results are compared with simulated results, and differences between measured and simulated results are identified. It was expected that differences would occur as SIMAN is developed for conventional vessels and offshore vessels, while R/V Gunnerus is an unconventional vessel (L=28.9 m, B=9.6m). The deviations may be due to inaccurate field test results or errors in the modelling in SIMAN. SIMAN underestimated tactical diameter, transfer and advance in the turning circle manoeuvres. The difference increased with increasing rudder angle (and consequently drift angle), which may indicate errors in modelling of the non-linear damping forces. The damping forces are then modified using Oltmann&apos;s polynomial for the cross-flow drag coefficient for a tanker. This improved the results, all with the exception of transfer and advance at rudder angles of 20 degrees. It is also shown that the results are sensitive to rudder angle, so incorrect full-scale measurement will affect the results. The difference between measured and simulated zig-zag trials are significant. However, only a few seconds or degrees difference between the simulated and the measured zig-zag results cause a large percentage difference. Possible reasons for the differences are inadequate data registration of the full-scale trials, or errors in modelling in SIMAN. Overestimated results in SIMAN may indicate an unstable model. Increasing the models stability index by reducing Nv had a negligible effect on the simulated results. Decreasing rudder angle in the simulations improved the results. Track reach in the stopping manoeuvres are overestimated by SIMAN. This may be due to modelling issues as R/V Gunnerus is much smaller and responds faster than the vessels that SIMAN is developed for.In the literature there exists several empirical methods to calculate the hydrodynamic coefficients used in manoeuvring equations. The hydrodynamic coefficients of R/V Gunnerus were calculated using approaches given by Wagner Smitt, Norrbin, Inoue, Clarke, Lee and Kijima, as well as using strip theory for a flat plate. Using these coefficients did not improve the simulated results.In order to create a complete motion model for R/V Gunnerus further investigation is necessary. It is recommended that PMM tests are performed to determine the hydrodynamic coefficients. It can also be useful to investigate the non-linear damping forces. In addition, new full-scale zig-zag tests should be performed in a way that 10/10 and 20/20 tests are obtained. Performing several reruns could be used to determine the precision errors of the full-scale trials. In the literature there is a need for vessels to be used for validation of simulation tools. R/V Gunnerus can be used as a case vessel to investigate how the simulation tools predict the manoeuvring performance of an unconventional vessel. The 26th ITTC stated that there is a particular need for mathematical models for low speed manoeuvring, and vessels also used for validation of CFD-methods. R/V Gunnerus can be used as a case vessel for this research. It is then necessary to carry out tests intended for these purposes.
10

Use of CFD to Study Hydrodynamic Loads on Free-Fall Lifeboats in the Impact Phase. : A verification and validation study.

Johannessen, Stian Ripegutu January 2012 (has links)
In the past, testing of lifeboat design has been carried out solely by experimental means. However, due to the large number of factors which influence the loads on the lifeboat structure and its occupants, optimization studies by experimental means have become both time-consuming and expensive. In addition, many effects cannot be studied at laboratory scale due to the inability to match all similarity requirements.Recent advances in computational fuid dynamics (CFD) have made it possible toanalyze the lifeboats performance under realistic conditions. By not being dependenton a physical model, investigation of a larger range of hull shapes at a variety of launch conditions can be done more easily and cost-ecient.This thesis explores the possibility of using the CD-adapco&apos;s CFD-software STARCCM+(STAR) to predict the performance of free-fall lifeboats during the impact phase.The thesis focuses on verification and validation of the software by studying water impact of different two and three-dimensional rigid and elastic wedges.For the two-dimensional case, 2-D rigid wedges with constant vertical velocity andvarying deadrise angles (4 to 81 degrees) are studied with respect to various slammingparameters presented by Zhao and Faltinsen (1992). In the study, good agreementis found between the solution predicted in STAR and the presented numerical andanalytical solutions. It is found that the slamming pressures are strongly dependent onthe deadrise angle; from 300 Pa for the 81 deg. wedge, to 275 000 Pa for the 4 deg. wedge. It is seen that as the deadrise angle is decreased, better resolution in grid size and time step is required to capture the peak pressures.The three-dimensional case includes both rigid and elastic wedges. For the rigid case, a3-D wedge is modeled so to represent an experimental study conducted by Yettou et al.(2006). It is found that STAR predicts a lower impact velocity than what is found inthe experimental study. Following, the pressures predicted are too low. The differenceis however moderate, and STAR is able to predict the displacement and velocity-timehistories of the wedge in a satisfactory manner. It is noted that the reason for thediscrepancy lies in the prediction of motion through air - and not in the simulation ofimpact and motion in water. It is also noted that refinements in grid size and time stepare not of great importance if only displacements and velocities are to be studied.For the elastic wedge case, four different elastic wedges are studied to exploreSTAR&apos;s possibilities and limitations related to fuid-structure interaction (FSI). Noverification or validation with existing theory or experimental data is performed. Aqualitative assessment of the results is however carried out and it is found that STARpredicts displacements, velocities, accelerations, pressures, deflections and stresses in a satisfactory manner.

Page generated in 0.0741 seconds