• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 21
  • 21
  • 19
  • 16
  • 16
  • 9
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Hydrodynamic analysis of ocean current turbines using vortex lattice method

Unknown Date (has links)
The main objective of the thesis is to carry out a rigorous hydrodynamic analysis of ocean current turbines and determine power for a range of flow and geometric parameters. For the purpose, a computational tool based on the vortex lattice method (VLM) is developed. Velocity of the flow on the turbine blades, in relation to the freestream velocity, is determined through induction factors. The geometry of trailing vortices is taken to be helicoidal. The VLM code is validated by comparing its results with other theoretical and experimental data corresponding to flows about finite-aspect ratio foils, swept wings and a marine current turbine. The validated code is then used to study the performance of the prototype gulfstream turbine for a range of parameters. Power and thrust coefficients are calculated for a range of tip speed ratios and pitch angles. Of all the cases studied, the one corresponding to tip speed ratio of 8 and uniform pitch angle 20 produced the maximum power of 41.3 [kW] in a current of 1.73 [m/s]. The corresponding power coefficient is 0.45 which is slightly less than the Betz limit power coefficient of 0.5926. The VLM computational tool developed for the research is found to be quite efficient in that it takes only a fraction of a minute on a regular laptop PC to complete a run. The tool can therefore be efficiently used or integrated into software for design optimization. / by Aneesh Goly. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
22

Modelling and verification of the dynamics of an ocean current energy converter

Graaff, Simon 12 1900 (has links)
Thesis (MScEng) -- Stellenbosch University, 2014. / ENGLISH ABSTRACT: South Africa has a signi cant potential resource for electrical power generation in the Agulhas Current on the southeast coast. The Ocean Current Energy Convertor studied in this project was designed to generate power from this current. The feasibility of this device was investigated by analysing the dynamic stability and controllability of the convertor, when acted upon by hydrodynamic forces while harvesting energy from the current. A simulation model was developed to predict the dynamic behaviour using the Simulink software suite. A scale model of the prototype was built and tested in the Towing Tank at Stellenbosch University, and the experimental results were compared against the simulation results. A control algorithm was designed, using the mathematical model, to control the roll angle and deployment depth. The control algorithm was tested in simulation. The results indicated that the simulation model accurately predicted the behaviour of the prototype in testing, and results showed that the device is both stable and controllable. It was concluded that this OCEC design concept warrants further investigation. The recommendations are that the experimental model be improved to ensure reliable experimental results, that further complexity be added to the simulation model, and that the control algorithm be tested on the improved prototype in the towing tank. / AFRIKAANSE OPSOMMING: Die Agulhas-seestroom aan die suidooskus van Suid-Afrika bied 'n aansienlike potensiële hulpbron vir elektriese kragopwekking. Die seestroomenergieomsetter (SEO) wat in hierdie projek bestudeer is was ontwikkel om krag uit hierdie seestroom te genereer. Die doenlikheid van hierdie toestel is ondersoek deur die dinamiese stabiliteit en beheerbaarheid van die omsetter onder die invloed van hidrodinamiese kragte te analiseer terwyl dit energie van die stroom inwin. 'n Simulasiemodel is met behulp van Simulink-sagteware ontwikkel om die dinamiese gedrag te voorspel. 'n Skaalmodel van die prototipe was gebou en in die sleeptenk by Universiteit Stellenbosch getoets en die eksperimentele resultate met die simulasie se resultate vergelyk. 'n Beheer-algoritme is daarna ontwerp, deur middel van die wiskundige model, om die rolhoek en diepte van ontplooiing te beheer.Hierdie algoritme is tydens simulasie getoets. Die resultate het aangedui dat die simulasiemodel akkuraat die gedrag van die prototipe tydens toetse voorspel het, en die resultate het gewys dat die toestel beide stabiel en beheerbaar is. Die gevolgtrekking is gemaak dat die SEO se ontwerpkonsep verdere studie regverdig. Die aanbevelings is dat die eksperimentele model verbeter word om betroubare eksperimentele resultate te verseker, dat verdere kompleksiteit by die simulasiemodel gevoeg word, en dat die beheer-algoritme op die verbeterde model in die sleeptenk getoets word.
23

Finite Element Modeling and Fatigue Analysis of Composite Turbine Blades under Random Ocean Current and Turbulence

Unknown Date (has links)
Several modifications have been implemented to numerical simulation codes based on blade element momentum theory (BEMT), for application to the design of ocean current turbine (OCT) blades. The modifications were applied in terms of section modulus and include adjustments due to core inclusion, buoyancy, and added mass. Hydrodynamic loads and mode shapes were calculated using the modified BEMT based analysis tools. A 3D model of the blade was developed using SolidWorks. The model was integrated with ANSYS and several loading scenarios, calculated from the modified simulation tools, were applied. A complete stress and failure analysis was then performed. Additionally, the rainflow counting method was used on ocean current velocity data to determine the loading histogram for fatigue analysis. A constant life diagram and cumulative fatigue damage model were used to predict the OCT blade life. Due to a critical area of fatigue failure being found in the blade adhesive joint, a statistical analysis was performed on experimental adhesive joint data. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
24

Fatigue modeling of composite ocean current turbine blade

Unknown Date (has links)
The success of harnessing energy from ocean current will require a reliable structural design of turbine blade that is used for energy extraction. In this study we are particularly focusing on the fatigue life of a 3m length ocean current turbine blade. The blade consists of sandwich construction having polymeric foam as core, and carbon/epoxy as face sheet. Repetitive loads (Fatigue) on the blade have been formulated from the randomness of the ocean current associated with turbulence and also from velocity shear. These varying forces will cause a cyclic variation of bending and shear stresses subjecting to the blade to fatigue. Rainflow Counting algorithm has been used to count the number of cycles within a specific mean and amplitude that will act on the blade from random loading data. Finite Element code ANSYS has been used to develop an S-N diagram with a frequency of 1 Hz and loading ratio 0.1 Number of specific load cycles from Rainflow Counting in conjunction with S-N diagram from ANSYS has been utilized to calculate fatigue damage up to 30 years by Palmgren-Miner's linear hypothesis. / by Mohammad Wasim Akram. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
25

Numerical Simulation of an Ocean Current Turbine Operating in a Wake Field

Unknown Date (has links)
An Ocean Current Turbine (OCT) numerical simulation for creating, testing and tuning flight and power takeoff controllers, as well as for farm layout optimization is presented. This simulation utilizes a novel approach for analytically describing oceanic turbulence. This approach has been integrated into a previously developed turbine simulation that uses unsteady Blade Element Momentum theory. Using this, the dynamical response and power production of a single OCT operating in ambient turbulence is quantified. An approach for integrating wake effects into this single device numerical simulation is presented for predicting OCT performance within a farm. To accomplish this, far wake characteristics behind a turbine are numerically described using analytic expressions derived from wind turbine wake models. These expressions are tuned to match OCT wake characteristics calculated from CFD analyses and experimental data. Turbine wake is characterized in terms of increased turbulence intensities and decreased mean wake velocities. These parameters are calculated based on the performance of the upstream OCT and integrated into the environmental models used by downstream OCT. Simulation results are presented that quantify the effects of wakes on downstream turbine performance over a wide range of relative downstream and cross stream locations for both moored and bottom mounted turbine systems. This is done to enable the development and testing of flight and power takeoff controllers designed for maximizing energy production and reduce turbine loadings. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection

Page generated in 0.0799 seconds