• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photobioreactor cultivation of the cell and tissue cultures derived from marine red macroalga Agardhiella subulata

Huang, Yao-ming 21 March 2001 (has links)
Graduation date: 2001
2

Antifouling compounds from deep-sea bacteria and their potential mode of action /

Xu, Ying. January 2009 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2009. / Includes bibliographical references.
3

Therapeutic potential, mechanism of action, and ecology of novel marine natural products

Unknown Date (has links)
The projects described in this dissertation are focused on compounds derived from the marine environment. Chapter 1 gives an introduction to the study of marine natural products to treat human ailments and a thorough review on compounds from lithistid sponges that have been isolated or synthesized since 2000. Chapter 2 describes the isolation and structure elucidation of two sesquiterpene substituted benzoquinone derivatives, petrosiquinones A and B, from a deep-water marine sponge from the Family Petrosiidae. Although initially purified following activity in a (Sb(B-catenin/Tcf4 assay they were later followed using tumor cell line cytotoxicity assays. Petrosiquinone A was the more active of the two compounds with moderate cytotoxicity in the DLD-1, PANC-1, and AsPC-1 cell lines. In Chapter 3, the isolation and structure elucidation of two new marine-derived macrolides, madeirolide A and B, isolated from a deep-water lithistid sponge of the genus Leiodermatium is described. / They were isolated using numerous chromatographic techniques and the structures were elucidated on the basis of 1D and 2D NMR spectra coupled with high resolution-mass spectrometry (HR-MS) data. Madeirolide A and B inhibited the growth of the fungal pathogen Candida albicans with minimum inhibitory concentrations (MIC) of 12.5 and 25 (So(Bg/mL, respectively, but were not cytotoxic in tumor cell assays under the conditions tested. Chapter 4 describes work performed to determine the molecular target of lasonolide A using affinity chromatography. The target of lasonolide A is of interest since lasonolide A is known to kill cancer cells in vitro through a unique mechanism. / This chapter highlights the research performed to create an affinity matrix with immobilized lasonolide. A target has not been confirmed but there are a number of interesting hits that are being pursued. In Chapter 5, a liquid chromatography-mass spectrometry (LC-MS) screening method was established in order to rapidly identify the metabolites from numerous collections of Lyngbya spp. obtained from Broward and Lee County, Florida sites that may help marine ecologists assess the effects of Lyngbya spp. blooms on the environment. A link between the metabolites produced and nutrients from both the algal tissue and water column was also explored. / by Priscilla L. Winder. / Thesis (Ph.D.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
4

Isolation and Structural Elucidation of Novel Bioactive Natural Products from Marine Organisms of the Western Atlantic Ocean

Unknown Date (has links)
The aim of this dissertation was to elaborate the exploration of biologically active secondary metabolites from the marine sponge Cacospongia cf. linteiformis collected from the Bahamas and the soft coral Briareum asbestinum collected from two different sites in Florida State, Boca Raton and Dry Tortugas. In chapter one, a review on previous chemical and biological studies of the marine sponge C. cf. linteiformis and soft coral B. asbestinum is provided. Particular attention is given to spongianolides and briarellins, two important classes of compounds isolated from C. cf. linteiformis and B. asbestinum, respectively, and their structural features and diverse bioactivities. In chapter two, the isolation and relative configuration determination of four epimeric sesterterpenoids, spongianolides E & F (18c, 18d, 19c, 19d) from C. cf. linteiformis collected from the Bahamas are discussed. Thanks to chemical modification (acetylation), diastereomeric 18c&18d and 19c&19d, respectively, were able to be isolated using chromatographic techniques for the first time, and then the relative configurations of 18c, 18d, 19c, 19d were determined based on NOESY NMR experiments. The bioactivity of mixture of compounds 18c, 18d, 19c, 19d were tested and it exhibited inhibition against Schnurri-3 (a regulator of postnatal bone mass). In chapter three, the isolation and structural elucidation of four new compounds, florellins A-D (49-52), from B. asbestinum collected off the coast of Boca Raton, FL are discussed. The molecular structures of these compounds were established by spectroscopic analysis. Compounds 49-52 are the first briarellins containing an acyl group at C-13, while 49 and 50 are the first briarellins possessing acylation at C-15. Florellins A–C (49-51) were screened and found cytotoxic against three human cell lines, BT474, WM266−4 and HEK293. In chapter four, the isolation and structural elucidation of four new compounds, florellins E-H (57-60), from B. asbestinum collected in Dry Tortugas, FL are discussed. The molecular structures of these compounds were established by spectroscopic analysis. Florellins F (58) and H (60) were screened against three human cell lines, BT474, WM266−4 and HEK293, but no cytotoxicity was exhibited. In chapter five, all the experimental procedures are described, including analytical instruments, animal materials, extraction and isolation processes, spectroscopic data and protocols of bioassays. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
5

"Recirculating aquaculture system integration of bivalve culture for effluent nutrient composition reduction" /

Myers, Amanda R. January 2006 (has links) (PDF)
Thesis (M.S.)--University of North Carolina at Wilmington, 2006. / Includes bibliographical references (leaves: 47-51)
6

The investigation of novel marine microorganisms for the production of biologically active metabolites

Sunkel, Vanessa Ann 15 July 2013 (has links)
New drugs, particularly antibiotics, are urgently required to combat the increasing problem of antibiotic resistant human pathogens. Due to the scarcity of products available today, the pharmaceutical industry is now under pressure to reassess compounds derived from plants, soil and marine organisms. Pharmaceutical companies are showing renewed interest in marine biotechnology as the oceans represent a rich source of both biological and chemical diversity of novel molecular structures with anti-cancer, anti-inflammatory and antibiotic properties. Formerly unexplored locations, such as deep ocean sediments, show great potential as a source of genetically novel microorganisms producing structurally unique secondary metabolites. In this research, a metabolite producing marine Pseudoalteromonas strain, known as AP5, was initially used to develop methods for the detection, optimisation of production and extraction of bioactive metabolites from other potentially novel marine isolates. Two hundred and seventy six (276) marine isolates from water and sediment samples from the Antarctic Ocean and Marion Island were isolated. Ten visually different isolates were screened for bioactivity against Gram-positive and -negative bacteria, fungi and yeast. Three out of the 10 isolates, WL61 , WL 114 and WL 136, appeared to be novel Streptomyces spp. showing activity against different test organisms. Many of these marine microorganisms are difficult to culture in the laboratory, particularly when they are cultivated continuously in shake flasks as they can stop producing bioactive compounds. The cultivation of marine isolates in bioreactors may be a more beneficial process for the optimisation of metabolite production compared to conventional liquid fermentation techniques whereby the solid-liquid-air interface of membrane bioreactors can imitate the natural environment of microbes. The membrane bioreactor system is a stable growth environment with low shear that supports steady-state biofilm growth consisting of a high cell density due to a high mass transfer of nutrients and oxygen to the cells. This approach was employed and isolates WL61, WL114 and WL136 were immobilised onto ceramic membranes using Quorus single fibre bioreactors (SFR). The SFRs were used to establish the most suitable growth medium for continuous secondary metabolite production. The best growth conditions were applied to the Quorus multifibre bioreactor (MFR) for scale up of biologically active metabolites, highlighting the potential of bioreactor technology for use in bioprospecting for isolating and screening novel and known organisms for new and interesting natural products. Furthermore, the Quorus MFR was shown to be suitable for the production of high yields of antimicrobial metabolites and is an efficient new fermentation production system. Purification by HPLC fractionation was used to characterise four major compounds from isolate WL 114 extracts. NMR structure elucidation identified one of the two primary compounds as Bisphenol A. The complete chemical structure for the second potent bioactive compound could not be determined due to the low concentration and volume of material. / KMBT_363 / Adobe Acrobat 9.54 Paper Capture Plug-in
7

Species-specific DNA markers for improving the genetic management of tilapia

Syaifudin, Mochamad January 2015 (has links)
The tilapias are a group of African and Middle Eastern cichlid fish that are widely cultured in developed and developing countries. With many different species and sub-species, and extensive use of interspecies hybrids, identification of tilapia species is of importance in aquaculture and in wild populations where introductions occur. This research set out to distinguish between tilapia species and sub-species by retrieving species-specific nuclear DNA markers (SNPs) using two approaches: (i) sequencing of the coding regions of the ADA gene; and (ii) next-generation sequencing, both standard RADseq and double-digest RADseq (ddRADseq). The mitochondrial DNA (mtDNA) marker cytochrome c oxidase subunit I (COI) was used to verify tilapia species status. ADA gene sequence analysis was partially successful, generating SNP markers that distinguished some species pairs. Most species could also be discriminated using the COI sequence. Reference based analysis (RBA: using only markers found in the O. niloticus genome sequence) of standard RADseq data identified 1,613 SNPs in 1,002 shared RAD loci among seven species. De novo based analysis (DBA: based on the entire data set) identified 1,358 SNPs in 825 loci and RBA detected 938 SNPs in 571 shared RAD loci from ddRADseq among 10 species. Phylogenetic trees based on shared SNP markers indicated similar patterns to most prior phylogenies based on other characteristics. The standard RADseq detected 677 species-specific SNP markers from the entire data set (seven species), while the ddRADseq retrieved 38 (among ten species). Furthermore, 37 such SNP markers were identified from ddRADseq data from a subset of four economically important species which are often involved in hybridization in aquaculture, and larger numbers of SNP markers distinguished between species pairs in this group. In summary, these SNPs are a valuable resource in further investigating hybridization and introgression in a range of captive and wild stocks of tilapias.
8

Marine biotechnology : evaluation and development of methods for the discovery of natural products from fungi

Pather, Simisha 18 June 2013 (has links)
One of the major impediments in the development of marine natural products is the provision of biologically active natural products in sufficient quantity for complete pharmacological evaluation, clinical trials and eventual commercial production. Marine microorganisms show great promise in providing a renewable source of biologically active natural products. The main aim of this study was to develop and evaluate methods for the isolation, identification and cultivation of marine fungi from the South African marine environment for the production of biologically active secondary metabolites. Twenty-four species of fungi were isolated from marine algae collected from the intertidal zone near Port Alfred, South Africa. The fungi were cultivated in small-scale under static and agitated conditions and their crude intra- and extracellular organic extracts were screened by ¹H NMR and a series of bioassays. Using this as a basis, one isolate was selected for further study. By analyses of the lTS1 region of the ribosomal DNA, the fungal isolate was identified as a marine-derived isolate of Eurotium rubrum (Aspergillus ruber). Although E. rubrum has been isolated from the marine environment, no investigations have been undertaken to determine the adaptation of these isolates to the marine environment. In order to optimise productivity, creativity and incubation time, the fungus was cultivated in small-scale using a variety of carbon (glucose, fructose, lactose, sucrose, marmitol and maltose) and nitrogen sources (ammonium tartrate, urea, peptone and yeast extract). An HPLC-DAD method was developed to assess the metabolic creativity and productivity under different fermentation conditions. Distinctive variations in the range and yield of metabolites produced as well as morphology and growth time were observed. The crude extracts from all fermentations were combined and six known compounds were isolated by reversed-phase chromatography and their structures elucidated by spectroscopic techniques. The known compounds were fIavoglaucin, aspergin, isodihydroauroglaucin, isotetrahydroauroglaucin, neoechinuline A and physcion. Neoechinuline A, isodihydroauroglaucin and isotetrahydroauroglaucin showed activity against oesophageal and cervical cancer cell lines.

Page generated in 0.0673 seconds