Spelling suggestions: "subject:"boarine ecosystem managementexploring."" "subject:"boarine ecosystem managementteori.""
1 |
Monitoring seasonal and annual changes in the mesozooplankton community of the Indian River Lagoon, FloridaUnknown Date (has links)
In estuaries, like the Indian River Lagoon, mesozooplankton have a vital role in the food web by connecting trophic levels. In this study, mesozooplankton abundance and species composition were monitored weekly on the incoming and outgoing tides from September 2006 to May 2009. For the incoming tide, the mean abundance was 2298.2 mesozooplankton/m3 (+/-325.2), and for the outgoing tide the mean abundance was 1180.0 mesozooplankton/m3 (+/-153.1). The mesozooplankton abundance on the incoming tide was significantly greater than on the outgoing tide. The most abundant type of mesozooplankton was the copepod Acartia tonsa, representing 35.0% and 52.1% of the individuals on the incoming and outgoing tides respectively. Mesozooplankton abundance values were compared with environmental data obtained from the South Florida Water Management District. The strongest positive correlation was found between chlorophyll a concentrations and A. tonsa abundance, likely due to phytoplankton being the primary food source for A. tonsa. / by Miranda Hoover Kerr. / Thesis (M.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
|
2 |
Generating space-time hypotheses in complex social-ecological systemsUnknown Date (has links)
As ecosystems degrade globally, ecosystem services that support life are increasingly threatened.
Indications of degradation are occurring in the Northern Indian River Lagoon (IRL) estuary in east central
Florida. Factors associated with ecosystem degradation are complex, including climate and land use
change. Ecosystem research needs identified by the Millennium Ecosystem Assessment (MA) include the
need to: consider the social with the physical; account for dynamism and change; account for complexity;
address issues of scale; and focus on ecosystem structure and process. Ecosystems are complex, self-organizing, multi-equilibrial, non-linear, middle-number systems that exist in multiple stable states. Results found are relative to the observation and the frame of analysis, requiring multi-scaled analytical techniques. This study addresses the identified ecosystem research needs and the complexity of the associated factors given these additional constraints. Relativity is addressed through univariate analysis of dissolved oxygen as a measure of the general health of the Northern IRL. Multiple spatial levels are employed to associate social process scales with physical process scales as basin, sub-basins, and watersheds. Scan statistics return extreme value clusters in space-time. Wavelet transforms decompose time-scales of cyclical data using varying window sizes to locate change in process scales in space over time. Wavelet transform comparative methods cluster temporal process scales across space. Combined these methods describe the space-time structure of process scales in a complex ecosystem relative to the variable examined, where the highly localized results allow for connection to unexamined variables. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
|
3 |
Mangrove Morphological Change Across an Environmental Gradients: Implications for Competitive Ability in a Changing ClimateUnknown Date (has links)
In Florida, mangroves have responded to climate change by slowly migrating
northward into traditional salt marsh habitat. However, little is understood about the
relationships among mangrove growth form plasticity and environmental conditions. In
addition, the effects of the mangrove northward expansion on pre-existing salt marsh
communities are unknown, especially any influences of differences in tree morphology.
The size, canopy structure, and root structure of the three mangrove species Rhizophora
mangle, Avicennia germinans, and Laguncularia racemosa were measured at six sites
along the east coast of Florida. Structural equation modeling was used to evaluate the
multivariate relationships between environmental and biotic variables. Mangrove growth
form varied widely with environmental variables. The results of this study suggest that R.
mangle expansion into salt marsh may rely on interactions with salt marsh and shading as
well as on climatic variables, which has implications for future mangrove expansion
northward in Florida. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
|
4 |
Interpretation of seafloor topologies based on IKONOS satellite imagery of a shallow-marine carbonate platform: Florida Bay to the Florida Reef TractUnknown Date (has links)
A benthic environments classification system is devised from digital interpretations of multi-spectral IKONOS satellite imagery for 1,360 km2 of the carbonate platform and presented in a comprehensive digitized map. The classification scheme is designed as a 7th order hierarchical structure that integrates 5 Physiographic Realms, 24 Morphodynamic Zones, 11 Geoforms, 39 Landforms, 6 dominant surface sediment types, 9 dominant biological covers and 3 densities of biological covers for the description of benthic environments. Digital analysis of the high-resolution (4 m) IKONOS imagery employed ESRI's ArcMap to manually digitize 412 mapping units at a scale of 1:6,000 differentiated by spectral reflectance, color tones, and textures of seafloor topologies. The context of each morphodynamic zone is characterized by the content and areal distribution (in km2) of geomorphic forms and biological covers. Over 58% of the mapping area is occupied by sediment flats, and seagrasses are colonized in almost 80% of the topologies. / by Jacob Thomas Steinle. / Thesis (M.S.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web.
|
Page generated in 0.0905 seconds