• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ecology and evolution of the marine reptile faunas of the Jurassic sub-boreal seaway

Foffa, Davide January 2018 (has links)
Jurassic marine ecosystems (ca. 201-145 million years ago) were dominated by three different lineages of reptiles - plesiosaurians, ichthyosaurs and thalattosuchian crocodylomorphs. Stratigraphic and fossil evidence indicates that these animals, like their modern counterparts, were able to coexist in the same environment for over ~50 million years from the Early Jurassic (~180 million years ago) to the Early Cretaceous (~130 million years ago). Marine reptile ecosystems were often very diverse, and included animals from different lineages, of disparate body-size and inferred ecology living alongside each other in the same environment. This unusual diversity suggests that marine reptiles formed complex ecosystems, and may have occupied analogous ecological roles today held by large fish, sharks, crocodiles, sirenians, and cetaceans. However, these comparisons are essentially qualitative, as they are based on the recurring convergent morphologies of skulls, mandibles and dentitions in aquatic tetrapods. Yet, they have never been quantitatively tested. Furthermore, although we have a comprehensive understanding of the anatomy, systematics, phylogenetic relationships, physiology and feeding ecology of these extinct animals, little is still known about the structure and evolution of their ecosystems. Thus, we do not understand what enabled marine reptiles to form complex assemblages, how their fauna changed through time, and more importantly how climatic and environmental changes shaped their long-term evolution. Answering these questions is essential because understanding past marine ecosystems may inform on whether and how modern ones can adjust to changes in the ocean temperature, chemistry and sea-level. In order to establish the reliability of these comparisons, in this project, I consider the evolution of the diverse marine reptile fossil assemblage of the Jurassic Sub-Boreal Seaway (JSBS) of the UK. The fossil record of the JSBS is an ideal case-study for many reasons. Firstly, it is a well-documented, high-diversity ecosystem, represented by hundreds of well-preserved specimens collected from the world-famous Oxford Clay Formations (OCF Callovian-early Oxfordian, late Middle to early Late Jurassic) and Kimmeridge Clay Formation (KCF - Kimmeridgian to Tithonian, Late Jurassic). These specimens have been intensively collected since the XIX century, and are available in museum collections. Secondly, the fossil record of the JSBS covers a continuous interval of ~18 million years (middle Callovian-early Tithonian ~166-148 million years ago) of marine reptile evolution, in a single seaway, during a time of well-documented environmental changes. These changes in sea-level, temperature and chemistry happened in concert with drastic changes in the composition between the OCF and KCF marine reptile faunas across the Middle-Late Jurassic boundary. Unfortunately, to date, the attempts to understand whether there is a correlation between these events have been hampered by the scarcity of fossils material from the intermediate layers of the Oxfordian 'Corallian Gap'. After a brief introduction (Chapter I), this project articulates in two parts. In the first descriptive section (Chapters II, III and IV), I set the bases for the second part by reviewing the fossil record of ichthyosaurs, plesiosaur and thalattosuchians of the JSBS. Particular emphasis was put on the systematics of thalattosuchian crocodylomorphs, and the fossil assemblage of the 'Corallian Gap'. The second part of this thesis is an analytical section (Chapters V and VI), in which, using a suite of numerical techniques, I investigate the ecology, evolution and feeding ecology of marine reptiles through time. A summary of the main conclusions and future directions are presented in Chapter VII. Chapter II is a description of a new genus and species, Ieldraan melkshamensis, a metriorhynchid thalattosuchian from the Callovian of England. The stratigraphic occurrence of this new taxon demonstrates that all the macrophagous lineages of Late Jurassic metriorhynchids originated in the Middle Jurassic, earlier than previously supposed. This also has important implications for the evolution of macropredatory features (particularly the dentition) in this group. In Chapters III and IV, I review the scarce fossil record of the Oxfordian 'Corallian Gap', the least studied stage of the considered ~18 million-year interval. The results show that despite the scarcity and poor preservation of materials compared to the underlying and overlying fossil-rich OCF and KCF, a large variety of marine reptiles lived in the JSBS during the 'Corallian Gap' (middle-late Oxfordian). The study confirms a drop in marine reptile diversity in the Oxfordian, exemplified by the demise of several OCF taxa, but partially counterbalanced by the contemporaneous radiation of some KCF lineages. This review confirms that a faunal turnover severely affected the composition of the JSBS across the Middle-Late Jurassic boundary, and I hypothesise that these faunal changes may have been driven by environmental perturbations during the Oxfordian. In Chapter V, I use the most common marine reptile fossils - teeth - and the revised stratigraphic occurrences of the JSBS (from the previous Chapters), to investigate the evolution of marine reptile groups, through time. Using a multivariate approach I established a quantitative system to assign species to dietary guilds based on dentition features that together with the availability of teeth, allowed examination of diversity and disparity patterns at unprecedented time, and systematic resolutions. The results show that different taxonomic/dietary groups did not overlap, suggesting partitioning of resources based on diet/feeding strategy. The analyses show a decline of shallow-water specialists, the diversification of macrophagous species, deep-diving taxa, and increasing body-size in concert with a deepening of sea-level across the Middle-Late Jurassic boundary. These trends are not accompanied by drops in disparity, but by a selective decline/increase of specific ecological guilds, that mimic the transition from shallow/nearshore to deeper/offshore habitats in modern cetacean coastal assemblages. In Chapter VI, I use a variety of multivariate techniques to present a quantitative assessment of the feeding behaviour of marine reptiles. The aim of this study is investigating the morphological and functional variation of ichthyosaur, plesiosaur and thalattosuchian lower jaws. This is done using a variety of multivariate techniques, and a biomechanical comparative approach. The analyses confirm previous qualitative observations that the ecosystems in the OCF and KCF were markedly distinct in faunal composition and structure. Phylogenetically closely related taxa preferentially cluster together, with minimal overlaps amongst groups in the morphospace. Focus examinations of key morphofunctional complexes reveals that marine reptile subclades are characterised by different combinations that are consistent with their inferred feeding ecologies (based on tooth morphology). Overall, the present quantitative results validate previous qualitative hypothetical feeding ecologies, and reveal multiple instances of morphofunctional convergent evolution. Overall my results also show that, like in modern ocean ecosystems, complex mechanisms of niche and habitat partitioning may have facilitated the coexistence of diverse marine reptile assemblages over tens of millions of years of evolutionary time.
2

Middle Triassic mixosaurid ichthyosaurs from SW China

Liu, Jun, 刘俊 January 2011 (has links)
Mixosaurid ichthyosaurs (mixosaurs) are a dominant group of Middle Triassic marine reptiles that was widely distributed in both Tethyan and Panthalassic terranes. They are represented by many excellently preserved specimens from all around the world and have been studied for more than one hundred years. Even so, their morphology is not adequately known. The systematics of mixosaurs is not well understood and their phylogeny has been controversial. The nomination of several Chinese mixosaurs makes the situation even worse. This thesis aims to provide a comprehensive review of Chinese mixosaurs and discuss their phylogenetic relationships. The detailed anatomy of only valid Chinese mixosaurid species Mixosaurus panxianensis is well established in this thesis. Its ontogenetic changes are also noted and a better diagnosis is given. A new morphotype of mixosaurs from a recently discovered fossil Lagerst?tte, the Luoping biota, is described in detail. This morphotype is similar to M. panxianensis but consistent differences are also present. The ecological comparison to M. panxianensis demonstrates that this morphotype represents a new taxon that is different from M. panxianensis. A nearly complete and articulated specimen of Phalarodon atavus from the Middle Triassic Luoping biota, Yunnan, South China is described. This is the first specimen of P. atavus discovered outside the Germanic Basin. The discovery of this specimen demonstrates a cosmopolitan distribution of P. atavus across the whole Tethyan ocean. The new specimen is also the first one preserving the postcranial anatomy of this species, providing the potential to evaluate its swimming ability for the first time. Functional morphology shows that this species is well adapted for a pursuit attack of prey, consistent with the distribution pattern of the species. Tooth crown morphology suggests that P. atavus may prefer externally soft prey such as belemnoids. Mixosaurs are divided into three ontogenetic stages based on the humeral morphology. The juvenile stage is characterized by a textured dorsal humeral shaft surface. The subadult stage is characterized by a smooth humeral shaft in dorsal view with a rugose humeral head. The adult stage is characterized by a smooth humeral head. The consistent presence of the surface texture of ventral humeral shaft is most probably caused by the strong muscle insertion presumably related to the function of steering of the fore fins in mixosaurs. Five morphotypes of Chinese mixosaurs are recognized in this study. Twenty-five more or less new characters are introduced to evaluate the phylogenetic relationships of mixosaurian-like specimens from China. The monophyly of mixosaurs including all studied Chinese morphotypes is well corroborated. Further investigation on the mixosaurs from Monte San Giorgio is recommended to resolve the phylogenetic relationships of mixosaurs. / published_or_final_version / Earth Sciences / Doctoral / Doctor of Philosophy
3

Reconstitution des variations saisonnières de paléotempérature par l’étude du δ18O des dents de vertébrés actuels et fossiles / Reconstruction of seasonal variations of paleotemperatures recorded in the δ18O of modernand fossil vertebrate teeth

Bernard, Aurélien 01 March 2010 (has links)
L’étude de la composition isotopique de l’oxygène de l’émail des dents de vertébrésconstitue une méthode fiable de reconstitution des paléotempératures, grâce àl’interdépendance entre le δ18O de l’apatite des dents, le δ18O des fluides corporels, del’eau ingérée et la température du milieu. L’amélioration et la miniaturisation des techniquesanalytiques a permis d’augmenter la résolution du signal reconstitué, depuis les variations detempérature sur de grandes échelles de temps jusqu’aux variations saisonnières durant laformation de la dent. Cependant, ces variations du δ18O de la dent ne sont pas uniquementdépendantes des variations de température du milieu, mais peuvent également êtreaffectées par d’autres paramètres climatiques, comme la répartition des précipitations aucours de l’année, ou biologique, comme le mode de minéralisation de la dent, l’alimentation,la physiologie de l’animal ou des migrations.Les paramètres biologiques peuvent être estimés dans le cas de taxons possédantdes parents proches dans la faune actuelle. Par exemple, la connaissance des processus deformation et de minéralisation des dents de bovinés actuels permet d’interpréter le signalisotopique de l’oxygène enregistré dans les dents de bovinés fossiles. Ainsi, l’analyse dedents de Bison priscus provenant de l’aven de Coudoulous (Lot, France) a permis dereconstituer les variations saisonnières de température au cours de l’avant-dernier épisodeglaciaire (MIS 6) au Pléistocène moyen, lorsque la région servait de terrain de chasse àHomo neanderthalensis. Le climat était à cette époque plus froid de 4°C en moyenne, maisavec des saisons nettement plus contrastées. Ainsi, si les températures estivales étaientidentiques aux valeurs actuelles, les températures hivernales étaient plus basses de 6-7°C.En milieu marin, les variations saisonnières de température affectent uniquement leseaux de surface. Les plaques dentaires de myliobatidés, un groupe de raies pélagiquesvivant principalement entre 0 et 100 mètres de profondeur, sont un outil potentiel pourreconstituer la paléosaisonnalité. L’étude de plaques dentaires de Myliobatis et deRhinoptera actuels montre que la composition isotopique des dents de ces animauxenregistre des variations de température et de δ18O des eaux de surface. Ainsi, il est doncpossible de reconstituer les caractéristiques des masses d’eau traversées par l’animal. Cetoutil a également un intérêt paléoécologique car il permet de mettre en évidence d’éventuelscomportements migratoires, comme chez certains myliobatidés actuels. L’étude despécimens d’Aetomylaeus provenant du Pliocène de Montpellier (Hérault, France) montredes températures 5°C plus élevées par rapport aux v aleurs actuelles. / The oxygen isotopic composition of the vertebrate tooth enamel is a reliable proxy toreconstruct paleotemperatures based on the dependence of the δ18O of the tooth apatite onthe δ18O of body fluids, on the δ18O of the drinking water, and on the environmentaltemperature. The improvement and the miniaturization of the analytical procedures allowedincreasing the resolution of the reconstructed signal, from paleotemperature variations overgeological times to seasonal variations during the tooth growth. However seasonal variationsof the enamel δ18O do not only depend on temperature variations but can also be influencedby other climatic parameters such as rainfall distribution over the year, or by biological andecological parameters such as tooth mineralization process, diet, physiology or migratorypatterns.Biological parameters can be estimated based on the study of extant relatives inmodern faunas. For example, data on tooth formation and mineralization processes inmodern bovids allow a better understanding of the oxygen isotopic signal recorded in fossilbovid teeth. Thus reconstruction of seasonal variations of temperature during the penultimateglacial episode (MIS 6) has been made possible from the analysis of Bison priscus teethfrom the aven of Coudoulous (Lot, France). Climate was 4°C colder during the middlePleistocene when Europe was still Homo neanderthalensis hunting ground, and seasonswere more contrasted than today. Summer temperatures were similar to modern values, butwinter temperatures were 6-7°C colder.In marine environments, seasonal variations of temperature only affect surfacewaters. Myliobatids are pelagic rays living mostly between 0 and 100 m depth, thus theoxygen isotopic composition of myliobatid dental plates is a potential proxy to reconstruct thepaleoseasonality. The isotopic analysis of modern Myliobatis and Rhinoptera samplesconfirmed that variations of the sea-surface temperature (SST) and the δ18O of seawater arerecorded in the δ18O of myliobatid teeth. Thus it is possible to reconstruct the variations ofseawater temperature during a part of the animal’s life, but it also allows pointing outmigratory patterns in some myliobatid species. Reconstructions of seasonal variations ofSST during the middle Pliocene in Montpellier (Hérault, France) from the δ18O of myliobatiddental plates yielded paleotemperatures 5°C higher than modern values.

Page generated in 0.0449 seconds