• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical investigation of geomechanical behaviour of hydrate-bearing sediments

Uchida, Shun January 2013 (has links)
No description available.
2

Characterizing the accumulation and distribution of gas hydrate in marine sediments using numerical models and seismic data

Nimblett, Jillian Nicole 01 December 2003 (has links)
No description available.
3

Gas production from hydrate-bearing sediments

Jang, Jaewon 08 July 2011 (has links)
Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. The unique behavior of hydrate-bearing sediments requires the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Hydraulic conductivity decreases with increasing variance in pore size distribution; while spatial correlation in pore size reduces this trend, both variability and spatial correlation promote flow focusing. Invading gas forms a percolating path while nucleating gas forms isolated gas bubbles; as a result, relative gas conductivity is lower for gas nucleation than for gas invasion processes, and constitutive models must be properly adapted for reservoir simulations. Physical properties such as gas solubility, salinity, pore size, and mixed gas conditions affect hydrate formation and dissociation; implications include oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations. High initial hydrate saturation and high depressurization favor gas recovery efficiency during gas production from hydrate-bearing sediments. Even a small fraction of fines in otherwise clean sand sediments can cause fines migration and concentration, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.
4

Gas production from hydrate-bearing sediments:geo-mechanical implications

Jung, Jongwon 10 November 2010 (has links)
Gas hydrate consists of guest gas molecules encaged in water molecules. Methane is the most common guest molecule in natural hydrates. Methane hydrate forms under high fluid pressure and low temperature and is found in marine sediments or in permafrost region. Methane hydrate can be an energy resource (world reserves are estimated in 20,000 trillion m3 of CH4), contribute to global warming, or cause seafloor instability. Research documented in this thesis starts with an investigation of hydrate formation and growth in the pores, and the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation. Then, emphasis is placed on identifying the advantages and limitations of different gas production strategies with emphasis on a detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2. The research methodology combines experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes.

Page generated in 0.1615 seconds