• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of denitrification in the nitrogen cycle of New England salt marshes

Hamersley, Michael Robert January 2002 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Biology; and the Woods Hole Oceanographic Institution), February 2002. / Vita. / Includes bibliographical references (leaves 153-161). / I used direct measurements of nitrogen gas (N₂ fluxes and a ¹⁵N stable isotope tracer to determine the contribution of denitrification to salt marsh sediment N cycling. Denitrification in salt marsh tidal creekbottoms is a major sink for groundwater nitrate of terrestrial origin. I studied creekbottom denitrification by direct measurements of N₂ fluxes in closed chambers against a low-N₂ background. I undertook experiments and simulation modeling of sediment N₂ fluxes in closed chambers to optimize the key experimental parameters of this approach. Denitrification in these sediments was driven by the degradation of labile organic matter pools which are depleted during long incubations. Sediment thickness was the most important parameter controlling the required incubation time. Errors of up to 13% with gas headspaces and 80% with water headspaces resulted from headspace N2 accumulation and the resulting collapse of the sediment-water diffusion gradient. These errors could be eliminated by using headspaces of sufficient thickness. Headspace flushing to reduce ammonium accumulation did not affect denitrification rates, but caused transient disturbance of N₂ flux rates. Direct measurements of 0₂, C0₂, N₂, and inorganic N fluxes from the sediments of a salt marsh tidal creek were made in order to examine the interaction of denitrification with the carbon, oxygen, and N cycles. Organic carbon concentration and lability were the primary controls on metabolic rates. C0₂/N flux ratios averaged 6.1, indicating respiration driven by algal biomass. / (cont.) Allochthonous denitrification accounted for 39% of total sediment denitrification (2.7 mol N m⁻² yr⁻¹). 46% of remineralized ammonium was denitrified, while the contribution of autochthonous denitrification to 0₂ and C0₂ fluxes was 18% and 10%, respectively. A ¹⁵N-ammonium tracer was used to study competition between plants and nitrifying bacteria for remineralized ammonium. In undisturbed sediments of Spartina alterniflora, plant uptake out-competed nitrification-denitrification, with plant uptake accounting for 66% of remineralized ammonium during the growing season. Under N fertilization (15.5 mol m⁻² yr⁻¹), both plant N uptake and denitrification increased, but denitrification dominated, accounting for 72% of the available N. When plant uptake was hydrologically suppressed, nitrification-denitrification was stimulated by the excess N, shifting the competitive balance toward denitrification. / by Michael Robert Hamersley. / Ph.D.
2

Carbon and nitrogen cycling in permeable continental shelf sediments and porewater solute exchange across the sediment-water interface

Rao, Alexandra Mina Fernandes 17 November 2006 (has links)
Continental margin sediments play an important role in marine biogeochemical cycles, partly due to high primary production rates and efficient export of organic matter to sediments in margin environments. This thesis presents studies of solute exchange in fine-grained sediments representative of slope and rise environments, and carbon and nitrogen cycling in sandy sediments dominant in continental shelves worldwide. Results of these studies advance understanding of the role of benthic processes on marine ecosystems. In fine-grained sediments, solute exchange by diffusion, biological mixing and bioirrigation can be quantified using in situ flux chambers with inert tracer additions. Mechanistic models of chamber tracer transport across the seabed indicate that in organic-rich sediments, bioirrigation and mixing dominate over a wide range of bottom water oxygen levels, reflecting the patchiness and versatility of benthic macrofaunal communities. Positive correlations between benthic oxygen and tracer fluxes appear site-specific. Reliable chamber volume estimates derived from mechanistic models reveal that empirical fits to chamber tracer datasets may overestimate chamber volume and benthic solute fluxes. The biogeochemistry of sandy, highly permeable sediments that dominate continental shelves is largely unknown because of the difficulty in sampling and studying them under natural conditions. Novel sediment reactors were developed and used to mimic in situ porewater advection and natural sedimentary conditions. Compositional changes of natural seawater, with and without the addition of

Page generated in 0.1455 seconds