Spelling suggestions: "subject:"boarine zooplanktongemeinschaft long"" "subject:"boarine zooplanktongemeinschaft hong""
1 |
Ecology and biology of marine zooplankton in the coastal waters of Hong Kong and Southern China.January 1993 (has links)
by Tang, Kam Wing. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1993. / Includes bibliographical references (leaves 139-149). / Abstract --- p.1 / Acknowledgements --- p.4 / Table of Contents --- p.5 / List of Tables --- p.6 / List of Figures --- p.7 / Chapter Chapter 1 --- General Introduction --- p.11 / Chapter Chapter 2 --- "Diel vertical migration and gut pigment rhythm of marine copepods in Tolo Harbour, Hong Kong" --- p.13 / Chapter 2.1 --- Literature Review --- p.13 / Chapter 2.2 --- Introduction --- p.21 / Chapter 2.3 --- Material and Methods --- p.25 / Chapter 2.4 --- Results --- p.31 / Chapter 2.5 --- Discussion --- p.66 / Chapter 2.6 --- Conclusion --- p.79 / Chapter Chapter 3 --- Distribution and biology of marine cladocerans in the coastal waters of southern China --- p.80 / Chapter 2.1 --- Literature Review --- p.80 / Chapter 2.2 --- Introduction --- p.84 / Chapter 2.3 --- Material and Methods --- p.93 / Chapter 2.4 --- Results --- p.132 / Chapter 2.5 --- Discussion --- p.133 / Chapter 2.6 --- Conclusion / References --- p.139
|
2 |
The grazing impact of microzooplankton on phytoplankton of different size classes in Tolo Harbour and Mirs Bay, Hong Kong.January 2009 (has links)
Lie, An Ying Alice. / Thesis submitted in: November 2008. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 115-134). / Abstracts in English and Chinese. / Chapter Chapter 1. --- Introduction --- p.1 / Chapter 1.1. --- Microzooplankton --- p.1 / Chapter 1.1.2. --- Microzooplankton grazing --- p.1 / Chapter 1.2. --- Dilution method --- p.4 / Chapter 1.2.1. --- Basic principles --- p.4 / Chapter 1.2.2 --- Variation and extensive uses of the dilution method --- p.7 / Chapter 1.2.3. --- Criticism of the dilution method --- p.9 / Chapter 1.2.4. --- Results of the dilution experiments and their implications --- p.11 / Chapter 1.3. --- The roles of microzooplankton --- p.16 / Chapter 1.4. --- Phytoplankton --- p.18 / Chapter 1.4.1. --- Size classification --- p.18 / Chapter 1.4.2. --- Chemotaxonomic marker pigments --- p.19 / Chapter 1.4.3. --- Nutrients and phytoplankton dynamics --- p.19 / Chapter 1.5. --- Hypothesis --- p.26 / Chapter 1.6. --- Objectives --- p.26 / Chapter 1.7 --- Research outline --- p.27 / Chapter 1.7.1. --- Microzooplankton grazing rates and phytoplankton growth rates --- p.27 / Chapter 1.7.2. --- Phytoplankton group selection --- p.27 / Chapter 1.7.3. --- Phytoplankton size selection --- p.27 / Chapter 1.8. --- Study sites --- p.27 / Chapter 1.81. --- Tolo Harbour --- p.28 / Chapter 1.8.2. --- Mirs Bay --- p.28 / Chapter 1.8.3. --- Biological and physio-chemical parameters --- p.30 / Chapter Chapter 2. --- Materials and methods --- p.33 / Chapter 2.1. --- Study site and sampling --- p.33 / Chapter 2.2. --- Dilution experiments --- p.33 / Chapter 2.2.1. --- Preliminary dilution experiments and enrichment tests --- p.35 / Chapter 2.2.2. --- HPLC --- p.37 / Chapter 2.2.3. --- Pigment data analysis --- p.41 / Chapter 2.2.4. --- Phytoplankton and microzooplankton community analysis --- p.42 / Chapter Chapter 3. --- Results --- p.43 / Chapter 3.1. --- Field parameters --- p.43 / Chapter 3.1.1. --- Physiochemical parameters --- p.43 / Chapter 3.1.2. --- Chlorophyll a --- p.46 / Chapter 3.2. --- Initial conditions --- p.49 / Chapter 3.2.1. --- Phytoplankton pigment and size fraction composition --- p.49 / Chapter 3.2.2. --- Microscopy cell counts --- p.56 / Chapter 3.3. --- Dilution experiments results --- p.64 / Chapter 3.3.1. --- Linear regression analysis results --- p.64 / Chapter 3.3.2. --- Estimated pigment specific phytoplankton growth rates and microzooplankton grazing rates --- p.66 / Chapter 3.3.3. --- Ratio of microzooplankton grazing to the phytoplankton growth rate in ambient nutrient --- p.70 / Chapter 3.4. --- Correlation analyses --- p.78 / Chapter 3.4.1. --- Physiochemical parameters --- p.78 / Chapter 3.4.2. --- Initial pigment concentration --- p.81 / Chapter 3.4.3. --- Initial densities --- p.81 / Chapter 3.4.4. --- Phytoplankton growth rates and microzooplankton grazing rates --- p.82 / Chapter 3.5. --- Percentage and composition shifts --- p.83 / Chapter 3.5.1. --- Percentage change --- p.83 / Chapter 3.5.2. --- Size fraction --- p.83 / Chapter 3.5.3. --- Pigment markers --- p.83 / Chapter Chapter 4. --- Discussions --- p.103 / Chapter 4.1. --- Hypothesis --- p.103 / Chapter 4.2. --- Phytoplankton growth rates and microzooplankton grazing rates --- p.104 / Chapter 4.3. --- Dilution experiment --- p.105 / Chapter 4.3.1. --- Nutrient enrichment --- p.105 / Chapter 4.3.2. --- Shift of pigment compositions --- p.106 / Chapter 4.3.3. --- Experiment limitations --- p.107 / Chapter 4.4. --- Microzooplankton feeding preference --- p.108 / Chapter 4.4.1. --- Phytoplankton size --- p.108 / Chapter 4.4.2. --- Phytoplankton group --- p.109 / Chapter 4.5. --- Food web dynamics --- p.110 / Chapter 4.5.1. --- The role of microzooplankton --- p.110 / Chapter 4.5.1.1. --- Nutrient recycling --- p.110 / Chapter 4.5.1.2. --- Energy transfer --- p.111 / Chapter 4.5.1.3. --- Phytoplankton control --- p.111 / Chapter 4.5.2. --- The role of mesozooplankton --- p.111 / Chapter Chapter 5. --- Conclusions --- p.113 / References --- p.115 / Appendices --- p.135
|
3 |
Faunal community structure associated with the bed of subtropical brown seaweed Sargassum siliquastrum (Turn.) Ag. in Hong Kong eastern waters, HKSAR.January 2010 (has links)
Ng, Ka Yan. / "November 2009." / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 329-399). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract (English) --- p.iv / Abstract (Chinese) --- p.ix / Contents --- p.xii / List of Tables --- p.xix / List of Figures --- p.xxi / Chapter Chapter 1 --- General Introduction / Chapter 1.1 --- Seaweeds as Beneficial Resources to Humans --- p.1 / Chapter 1.2 --- Seaweed Communities as a Habitat --- p.5 / Chapter 1.2.1 --- Reasons for being a Favourable Habitat in the Ocean ´Ø and the Coastal Region --- p.5 / Chapter 1.2.2 --- Characteristics of Seagrass Habitat and its Associated Faunal Communities --- p.8 / Chapter 1.2.3 --- Characteristics of Seaweed Habitat and its Associated Faunal Communities --- p.9 / Chapter 1.2.3.1 --- Seasonality --- p.9 / Chapter 1.2.3.2 --- Structural Complexity --- p.10 / Chapter 1.2.3.3 --- Canopy Effect on Biota --- p.10 / Chapter 1.3 --- Marine Environment and Sargassum Communities in Hong Kong --- p.11 / Chapter 1.4 --- Study Organism: the Sargassum siliquastrum --- p.14 / Chapter 1.5 --- Study Significance and Objectives --- p.16 / Chapter 1.6 --- Study Sites --- p.18 / Chapter 1.7 --- Thesis Organization --- p.21 / Chapter Chapter 2 --- Zooplankton Assemblage in Seaweed Bed of Sargassum siliquastrum and Its Temporal Variation / Chapter 2.1 --- Introduction --- p.27 / Chapter 2.2 --- Materials and Methods --- p.34 / Chapter 2.2.1 --- Sample collection --- p.34 / Chapter 2.2.2 --- Data acquisition --- p.36 / Chapter 2.2.3 --- Data analysis --- p.37 / Chapter 2.3 --- Results --- p.39 / Chapter 2.3.1 --- Temporal Change in Zooplankton Assemblage Composition --- p.39 / Chapter 2.3.1.1 --- Change in Zooplankton Abundance with Time --- p.43 / Chapter 2.3.1.2 --- Temporal Change in Zooplankton Species Composition --- p.44 / Chapter 2.3.2 --- Effects of Vegetation on Zooplankton Assemblage Structure --- p.47 / Chapter 2.3.2.1 --- Comparison between Vegetated and Unvegetated Habitats in terms of Zooplankton Community Structure --- p.47 / Chapter 2.3.2.2 --- Comparison between Vegetated and Unvegetated Habitats in terms of Zooplankton Abundance --- p.50 / Chapter 2.3.2.3 --- Comparison between Vegetated and Unvegetated Habitats in terms of Zooplankton Species Composition --- p.51 / Chapter 2.3.3 --- Temporal Trends of Environmental Factors and their Relationship with Zooplankton Assemblage --- p.58 / Chapter 2.3.4 --- Relationship between Zooplankton Assemblage and Seaweed Phenology --- p.59 / Chapter 2.4 --- Discussion --- p.61 / Chapter 2.4.1 --- Macro-distribution Pattern and Temporal Change in Zooplankton Assemblage Structure in Sargassum siliquastrum Bed --- p.61 / Chapter 2.4.2 --- Effects of Vegetation on the Micro-distribution of Zooplankton within and between Habitats ´ؤ Relationship between Sargassum Phenology and the associated Zooplankton Assemblage Structure --- p.66 / Chapter 2.4.3 --- Species Composition of Zooplankton Assemblage in Seaweed Bed of Sargassum siliquastrum and its Potential Role as Nursery Ground for Fishery Resources --- p.70 / Chapter 2.5 --- Summary and Conclusion --- p.74 / Chapter Chapter 3 --- Effects of Seaweed Canopy on the Structure of Zooplankton Assemblage in the Sargassum siliquastrum Bed / Chapter 3.1 --- Introduction --- p.118 / Chapter 3.2 --- Materials and Methods --- p.121 / Chapter 3.2.1 --- Sample collection --- p.121 / Chapter 3.2.2 --- Data acquisition --- p.122 / Chapter 3.2.3 --- Data analysis --- p.123 / Chapter 3.3 --- Results --- p.125 / Chapter 3.3.1 --- Effects of Canopy on Zooplankton Community Structure --- p.125 / Chapter 3.3.2 --- "Comparison between Control, Treatment and Unvegetated Habitats in terms of Zooplankton Abundance and Its Temporal Variation" --- p.127 / Chapter 3.3.3 --- "Comparison between Control, Treatment and Unvegetated Habitats in terms of Zooplankton Species Composition and Its Temporal Variation" --- p.128 / Chapter 3.4 --- Discussion --- p.134 / Chapter 3.4.1 --- Effects of Canopy Removal on the Zooplankton Assemblage Structure --- p.134 / Chapter 3.4.2 --- Role of Seaweed Canopy in Zooplankton Community and the Potential Impacts of Canopy Removal on the Coastal Ecosystem --- p.137 / Chapter 3.5 --- Summary and Conclusion --- p.141 / Chapter Chapter 4 --- Epiphytic Faunal Assemblages in Seaweed Bed of Sargassum siliquastrum and its Temporal Variation / Chapter 4.1 --- Introduction --- p.153 / Chapter 4.2 --- Materials and Methods --- p.161 / Chapter 4.2.1 --- Sample collection --- p.161 / Chapter 4.2.2 --- Data acquisition --- p.162 / Chapter 4.2.3 --- Data analysis --- p.163 / Chapter 4.3 --- Results --- p.165 / Chapter 4.3.1 --- Temporal Change in Epiphytic Faunal Assemblage Composition and Comparison among Sites --- p.165 / Chapter 4.3.1.1 --- Temporal Change in Epiphytic Faunal Density and Comparison among Sites --- p.171 / Chapter 4.3.1.2 --- Temporal Change in Epiphytic Faunal Species Richness and Comparison among Sites --- p.172 / Chapter 4.3.1.3 --- Temporal Change in Epiphytic Faunal Species Composition --- p.175 / Chapter 4.3.1.4 --- Occurrence of Caprellidean and Its Variation with Seaweed Growth Stages --- p.179 / Chapter 4.3.2 --- Temporal Trends of Environmental Factors and their Relationship with Epiphytic Faunal Assemblage --- p.179 / Chapter 4.4 --- Discussion --- p.181 / Chapter 4.4.1 --- Temporal Change in Epiphytic Faunal Assemblage Structure --- p.181 / Chapter 4.4.2 --- Species Composition of Epiphytic Faunal Assemblage in Seaweed Bed of Sargassum siliquastrum and Its Potential Role as Nursery Grounds --- p.191 / Chapter 4.4.3 --- Distribution of Epiphytic Fauna in Seaweed Bed of Sargassum siliquastrum among Different Localities --- p.196 / Chapter 4.4.4 --- Relationship of Epiphytic Faunal Assemblage with Environmental Factors --- p.197 / Chapter 4.5 --- Summary and Conclusion --- p.198 / Chapter Chapter 5 --- Relationship of Epiphytic Faunal Assemblage with the Structural Complexity of Seaweed Sargassum siliquastrum / Chapter 5.1 --- Introduction --- p.234 / Chapter 5.2 --- Materials and Methods --- p.239 / Chapter 5.2.1 --- Sample collection --- p.239 / Chapter 5.2.2 --- Data acquisition --- p.241 / Chapter 5.2.3 --- Data analysis --- p.243 / Chapter 5.3 --- Results --- p.245 / Chapter 5.3.1 --- Effects of Macroalgal Structural Complexity on the Associated Epiphytic Faunal Assemblage Structure --- p.245 / Chapter 5.3.1.1 --- Effects on Epiphytic Faunal Abundance --- p.245 / Chapter 5.3.1.2 --- Effects on Epiphytic Faunal Species Richness --- p.247 / Chapter 5.3.1.3 --- Relationship among Parameters of Sargassum siliquastrum --- p.248 / Chapter 5.3.2 --- Within-plant Zonation of Epiphytic Faunal Assemblage Structure --- p.249 / Chapter 5.3.2.1 --- Within-plant Distribution of Epiphytic Faunal Density --- p.250 / Chapter 5.3.2.2 --- Within-plant Distribution of Epiphytic Species Richness --- p.252 / Chapter 5.3.2.3 --- Within-plant Distribution of Epiphytic Faunal Species Composition --- p.253 / Chapter 5.3.2.4 --- Physical Parameters Associated with Each Zone of Sargassum siliquastrum --- p.257 / Chapter 5.4 --- Discussion --- p.260 / Chapter 5.4.1 --- Effects of Macroalgal Structural Complexity and Biomass on the Associated Epiphytic Faunal Assemblage Structure --- p.260 / Chapter 5.4.2 --- Within-plant Zonation of Epiphytic Faunal Assemblage Structure --- p.264 / Chapter 5.5 --- Summary and Conclusion --- p.273 / Chapter Chapter 6 --- Synthesis and Perspectives --- p.320 / References --- p.329
|
Page generated in 0.0544 seconds