Spelling suggestions: "subject:"markov kedja"" "subject:"markov edja""
1 |
Layer Of Protection Analysis: Pilotstudie, metodutveckling och tillämpning på ett konventionellt hydrauliskt bromssystem / Layer Of Protection Analysis: Pilot study, method development and application on a hydraulic braking systemRahimi ata, Kooscha-Kevin January 2019 (has links)
Within the safety analysis industry there are a variety of tools used to ensure reliability and security of systems, ranging from mostly qualitative approaches to mostly quantitative. One safety analysis method that lies in between these two is called Layers Of Protection Analysis (LOPA). LOPA is known as a “semi-quantitative” approach that uses a mix of quantitative and qualitative approaches to draw conclusions. In this masters thesis the LOPA approach is demonstrated, in addition to being developed into two alternate LOPA approaches, known as MarkovLOPA and RBDLOPA. These two developed approaches use the concept of Markov chains and Reliability block diagram (RBD) respectively, to extend the applicability of the traditional LOPA methodology. Furthermore, a conventional hydraulic braking system (CHB), which includes ABS/TCS- and ESP functionality was analysed by these three methodologies. The results of the analysis show that in the analysis by LOPA and RBDLOPA 4- and 3 out of 10 scenarios need slight improvements and only 1 scenario for MarkovLOPA. Additionally, the validity of the alternative approaches are analysed by a sensitivity analysis, showing irregularities in the results, leading to the conclusion that further research and development is required prior to industrial applications of the approaches.
|
2 |
Perron-Frobenius' Theory and ApplicationsEriksson, Karl January 2023 (has links)
This is a literature study, in linear algebra, about positive and nonnegative matrices and their special properties. We say that a matrix or a vector is positive/nonnegative if all of its entries are positive/nonnegative. First, we study some generalities and become acquainted with two types of nonnegative matrices; irreducible and reducible. After exploring their characteristics we investigate and prove the two main theorems of this subject, namely Perron's and Perron-Frobenius' theorem. In short Perron's theorem from 1907 tells us that the spectral radius of a positive matrix is a simple eigenvalue of the matrix and that its eigenvector can be taken to be positive. In 1912, Georg Frobenius generalized Perron's results also to irreducible nonnegative matrices. The two theorems have a wide range of applications in both pure mathematics and practical matters. In real world scenarios, many measurements are nonnegative (length, time, amount, etc.) and so their mathematical formulations often relate to Perron-Frobenius theory. The theory's importance to linear dynamical systems, such as Markov chains, cannot be overstated; it determines when, and to what, an iterative process will converge. This result is in turn the underlying theory for the page-ranking algorithm developed by Google in 1998. We will see examples of all these applications in chapters four and five where we will be particularly interested in different types of Markov chains. The theory in this thesis can be found in many books. Here, most of the material is gathered from Horn-Johnson [5], Meyer [9] and Shapiro [10]. However, all of the theorems and proofs are formulated in my own way and the examples and illustrations are concocted by myself, unless otherwise noted. / Det här är en litteraturstudie, inom linjär algebra, om positiva och icke-negativa matriser och deras speciella egenskaper. Vi säger att en matris eller en vektor är positiv/icke-negativ om alla dess element är positiva/icke-negativa. Inledningsvis går vi igenom några grundläggande begrepp och bekanta oss med två typer av icke-negativa matriser; irreducibla och reducibla. Efter att vi utforskat deras egenskaper så studerar vi och bevisar ämnets två huvudsatser; Perrons och Perron-Frobenius sats. Kortfattat så säger Perrons sats, från 1907, att spektralradien för en positiv matris är ett simpelt egenvärde till matrisen och att dess egenvektor kan tas positiv. År 1912 så generaliserade Georg Frobenius Perrons resultat till att gälla också för irreducibla icke-negativa matriser. De två satserna har både många teoretiska och praktiska tillämpningar. Många verkliga scenarios har icke-negativa mått (längd, tid, mängd o.s.v) och därför relaterar dess matematiska formulering till Perron-Frobenius teori. Teorin är betydande även för linjära dynamiska system, såsom Markov-kedjor, eftersom den avgör när, och till vad, en iterativ process konvergerar. Det resultatet är i sin tur den underliggande teorin bakom algoritmen PageRank som utvecklades av Google år 1998. Vi kommer se exempel på alla dessa tillämpningar i kapitel fyra och fem, där vi speciellt intresserar oss för olika typer av Markov-kedjor. Teorin i den här artikeln kan hittas i många böcker. Det mesta av materialet som presenteras här har hämtats från Horn-Johnson [5], Meyer [9] och Shapiro [10]. Däremot är alla satser och bevis formulerade på mitt eget sätt och alla exempel, samt illustrationer, har jag skapat själv, om inget annat sägs.
|
Page generated in 0.0413 seconds