• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 23
  • 23
  • 23
  • 15
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Bayesian modelling of integrated data and its application to seabird populations

Reynolds, Toby J. January 2010 (has links)
Integrated data analyses are becoming increasingly popular in studies of wild animal populations where two or more separate sources of data contain information about common parameters. Here we develop an integrated population model using abundance and demographic data from a study of common guillemots (Uria aalge) on the Isle of May, southeast Scotland. A state-space model for the count data is supplemented by three demographic time series (productivity and two mark-recapture-recovery (MRR)), enabling the estimation of prebreeder emigration rate - a parameter for which there is no direct observational data, and which is unidentifiable in the separate analysis of MRR data. A Bayesian approach using MCMC provides a flexible and powerful analysis framework. This model is extended to provide predictions of future population trajectories. Adopting random effects models for the survival and productivity parameters, we implement the MCMC algorithm to obtain a posterior sample of the underlying process means and variances (and population sizes) within the study period. Given this sample, we predict future demographic parameters, which in turn allows us to predict future population sizes and obtain the corresponding posterior distribution. Under the assumption that recent, unfavourable conditions persist in the future, we obtain a posterior probability of 70% that there is a population decline of >25% over a 10-year period. Lastly, using MRR data we test for spatial, temporal and age-related correlations in guillemot survival among three widely separated Scottish colonies that have varying overlap in nonbreeding distribution. We show that survival is highly correlated over time for colonies/age classes sharing wintering areas, and essentially uncorrelated for those with separate wintering areas. These results strongly suggest that one or more aspects of winter environment are responsible for spatiotemporal variation in survival of British guillemots, and provide insight into the factors driving multi-population dynamics of the species.
22

Stochastic Modelling of Vehicle-Structure Interactions : Dynamic State And Parameter Estimation, And Global Response Sensitivity Analysis

Abhinav, S January 2016 (has links) (PDF)
The analysis of vehicle-structure interaction systems plays a significant role in the design and maintenance of bridges. In recent years, the assessment of the health of existing bridges and the design of new ones has gained significance, in part due to the progress made in the development of faster moving locomotives, the desire for lighter bridges, and the imposition of performance criteria against rare events such as occurrence of earthquakes and fire. A probabilistic analysis would address these issues, and also assist in determination of reliability and in estimating the remaining life of the structure. In this thesis, we aim to develop tools for the probabilistic analysis techniques of state estimation, parameter identification and global response sensitivity analysis of vehicle-structure interaction systems, which are also applicable to the broader class of structural dynamical systems. The thesis is composed of six chapters and three appendices. The contents of these chapters and the appendices are described in brief in the following paragraphs. In chapter 1, we introduce the problem of probabilistic analysis of vehicle-structure interactions. The introduction is organized in three parts, dealing separately with issues of forward problems, inverse problems, and global response sensitivity analysis. We begin with an overview of the modelling and analysis of vehicle-structure interaction systems, including the application of spatial substructuring and mesh partitioning schemes. Following this, we describe Bayesian techniques for state and parameter estimation for the general class of state-space models of dynamical systems, including the application of the Kalman filter and particle filters for state estimation, MCMC sampling based filters for parameter identification, and the extended Kalman filter, the unscented Kalman filter and the ensemble Kalman filter for the problem of combined state and parameter identification. In this context, we present the Rao-Blackwellization method which leads to variance reduction in particle filtering. Finally, we present the techniques of global response sensitivity analysis, including Sobol’s analysis and distance-based measures of sensitivity indices. We provide an outline and a review of literature on each of these topics. In our review of literature, we identify the difficulties encountered when adopting these tools to problems involving vehicle-structure interaction systems, and corresponding to these issues, we identify some open problems for research. These problems are addressed in chapters 2, 3, 4 and 5. In chapter 2, we study the application of finite element modelling, combined with numerical solutions of governing stochastic differential equations, to analyse instrumented nonlinear moving vehicle-structure systems. The focus of the chapter is on achieving computational efficiency by deploying, within a single modeling framework, three sub structuring schemes with different methodological moorings. The schemes considered include spatial substructuring schemes (involving free-interface coupling methods), a spatial mesh partitioning scheme for governing stochastic differential equations (involving the use of a predictor corrector method with implicit integration schemes for linear regions and explicit schemes for local nonlinear regions), and application of the Rao-Blackwellization scheme (which permits the use of Kalman’s filtering for linear substructures and Monte Carlo filters for nonlinear substructures). The main effort in this work is expended on combining these schemes with provisions for interfacing of the substructures by taking into account the relative motion of the vehicle and the supporting structure. The problem is formulated with reference to an archetypal beam and multi-degrees of freedom moving oscillator with spatially localized nonlinear characteristics. The study takes into account imperfections in mathematical modelling, guide way unevenness, and measurement noise. The numerical results demonstrate notable reduction in computational effort achieved on account of introduction of the substructuring schemes. In chapter 3, we address the issue of identification of system parameters of structural systems using dynamical measurement data. When Markov chain Monte Carlo (MCMC) samplers are used in problems of system parameter identification, one would face computational difficulties in dealing with large amount of measurement data and (or) low levels of measurement noise. Such exigencies are likely to occur in problems of parameter identification in dynamical systems when amount of vibratory measurement data and number of parameters to be identified could be large. In such cases, the posterior probability density function of the system parameters tends to have regions of narrow supports and a finite length MCMC chain is unlikely to cover pertinent regions. In this chapter, strategies are proposed based on modification of measurement equations and subsequent corrections, to alleviate this difficulty. This involves artificial enhancement of measurement noise, assimilation of transformed packets of measurements, and a global iteration strategy to improve the choice of prior models. Illustrative examples include a laboratory study on a beam-moving trolley system. In chapter 4, we consider the combined estimation of the system states and parameters of vehicle-structure interaction systems. To this end, we formulate a framework which uses MCMC sampling for parameter estimation and particle filtering for state estimation. In chapters 2 and 3, we described the computational issues faced when adopting these techniques individually. When used together, we come across both sets of issues, and find the complexity of the estimation problem is greatly increased. In this chapter, we address the computational issues by adopting the sub structuring techniques proposed in chapter 2, and the parameter identification method based on modified measurement models presented in chapter 3. The proposed method is illustrated on a computational study on a beam-moving oscillator system with localized nonlinearities, as well as on a laboratory study on a beam-moving trolley system. In chapter 5, we present global response sensitivity indices for structural dynamical systems with random system parameters excited by multiple random excitations. Two new procedures for evaluating global response sensitivity measures with respect to the excitation components are proposed. The first procedure is valid for stationary response of linear systems under stationary random excitations and is based on the notion of Hellinger’s metric of distance between two power spectral density functions. The second procedure is more generally valid and is based on the l2 norm based distance measure between two probability density functions. Specific cases which admit exact solutions are presented and solution procedures based on Monte Carlo simulations for more general class of problems are outlined. The applicability of the proposed procedures to the case of random system parameters is demonstrated using suitable illustrations. Illustrations include studies on a parametrically excited linear system and a nonlinear random vibration problem involving moving oscillator-beam system that considers excitations due to random support motions and guide-way unevenness. In chapter 6 we summarize the contributions made in chapters 2, 3, 4, and 5, and on the basis of these studies, present a few problems for future research. In addition to these chapters, three appendices are included in this thesis. Appendices A and B correspond to chapter 3. In appendix A, we study the effect on the nature of the posterior probability density functions of large measurement data set and small measurement noise. Appendix B illustrates the MCMC sampling based parameter estimation procedure of chapter 3 using a laboratory study on a bending–torsion coupled, geometrically non-linear building frame under earthquake support motion. In appendix C, we present Ito-Taylor time discretization schemes for stochastic delay differential equations found in chapter 5.
23

空間相關存活資料之貝氏半參數比例勝算模式 / Bayesian semiparametric proportional odds models for spatially correlated survival data

張凱嵐, Chang, Kai lan Unknown Date (has links)
近來地理資訊系統(GIS)之資料庫受到不同領域的統計學家廣泛的研究,以期建立及分析可描述空間聚集效應及變異之模型,而描述空間相關存活資料之統計模式為公共衛生及流行病學上新興的研究議題。本文擬建立多維度半參數的貝氏階層模型,並結合空間及非空間隨機效應以描述存活資料中的空間變異。此模式將利用多變量條件自回歸(MCAR)模型以檢驗在不同地理區域中是否存有空間聚集效應。而基準風險函數之生成為分析貝氏半參數階層模型的重要步驟,本研究將利用混合Polya樹之方式生成基準風險函數。美國國家癌症研究院之「流行病監測及最終結果」(Surveillance Epidemiology and End Results, SEER)資料庫為目前美國最完整的癌症病人長期追蹤資料,包含癌症病人存活狀況、多重癌症史、居住地區及其他分析所需之個人資料。本文將自此資料庫擷取美國愛荷華州之癌症病人資料為例作實證分析,並以貝氏統計分析中常用之模型比較標準如條件預測指標(CPO)、平均對數擬邊際概似函數值(ALMPL)、離差訊息準則(DIC)分別測試其可靠度。 / The databases of Geographic Information System (GIS) have gained attention among different fields of statisticians to develop and analyze models which account for spatial clustering and variation. There is an emerging interest in modeling spatially correlated survival data in public health and epidemiologic studies. In this article, we develop Bayesian multivariate semiparametric hierarchical models to incorporate both spatially correlated and uncorrelated frailties to answer the question of spatial variation in the survival patterns, and we use multivariate conditionally autoregressive (MCAR) model to detect that whether there exists the spatial cluster across different areas. The baseline hazard function will be modeled semiparametrically using mixtures of finite Polya trees. The SEER (Surveillance Epidemiology and End Results) database from the National Cancer Institute (NCI) provides comprehensive cancer data about patient’s survival time, regional information, and others demographic information. We implement our Bayesian hierarchical spatial models on Iowa cancer data extracted from SEER database. We illustrate how to compute the conditional predictive ordinate (CPO), the average log-marginal pseudo-likelihood (ALMPL), and deviance information criterion (DIC), which are Bayesian criterions for model checking and comparison among competing models.

Page generated in 0.0912 seconds