• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Extraction of gating mechanisms from Markov state models of a pentameric ligand-gated ion channel

Karalis, Dimitrios January 2021 (has links)
GLIC är en pH-känslig pentamerisk ligandstyrd jonkanal (pLGIC) som finns i cellmembranet hos prokaryoten Gloeobacter violaceus. GLIC är en bakteriell homolog till flera receptorer som är viktiga i nervsystemet hos de flesta eukaryotiska organismer. Dessa receptorer fungerar som mallar för utvecklingen av målstyrda bedövnings- och stimulerande läkemedel som påverkar nervsystemet. Förståelsen av ett proteins mekanismer har därför hög prioritet inför läkemedelsutvecklingen. Eukaryota pLGICs är dock mycket komplexa eftersom några av de är heteromera, har flera domäner, och de pågår eftertranslationella ändringar. GLIC, å andra sidan, har en enklare struktur och det räcker att analysera strukturen av en subenhet - eftersom alla subenheter är helt lika. Flertalet möjliga grindmekanismer föreslogs av vetenskapen men riktiga öppningsmekanismen av GLIC är fortfarande oklar. Projektets mål är att genomföra maskininlärning (ML) för att upptäcka nya grindmekanismer med hjälp av datormetoder. Urspungsdatan togs från tidigare forskning där andra ML-redskap såsom molekyldynamik (MD), elastisk nätverksstyrd Brownsk dynamik (eBDIMS) och Markovstillståndsmodeller (MSM) användes. Utifrån dessa redskap simulerades proteinet som vildtyp samt med funktionsförstärkt mutation vid två olika pH värden. Fem makrotillstånd byggdes: två öppna, två stängda och ett mellanliggande. I projektet användes ett annat ML redskap: KL-divergens. Detta redskap användes för att hitta skillnader i avståndfördelning mellan öppet och stängt makrotillstånd. Utifrån ursprungsdatan byggdes en tensor som lagrade alla parvisa aminosyrornas avstånd. Varje aminosyrapar hade sin egen metadata som i sin tur användes för att frambringa alla fem avståndsfördelningar fråm MSMs som byggdes i förväg. Sedan bräknades medel-KL-divergens mellan två avståndfördelningar av intresse för att filtrera bort aminosyropar med överlappande avståndsfördelningar. För att se till att aminosyror inom aminosyrapar som låg kvar kan påverka varandra, filtrerades bort alla par vars minsta och medelavstånd var stora. De kvarvarande aminosyroparen utvärderades i förhållande till alla fem makrotillstånd Viktiga nya grindmekanismer som hittades genom både KL-divergens och makrotillståndsfördelningar innefattade loopen mellan M2-M3 helixarna av en subenhet och både loopen mellan sträckor β8 och β9 (Loop F)/N-terminal β9-sträckan och pre-M1/N-terminal M1 av närliggande subenheten. Loopen mellan sträckor β8 och β9 (Loop F) visade höga KL-värden också med loopen mellan sträckor β1 och β2 loop samt med loopen mellan sträckor β6 och β7 (Pro-loop) och avståndet mellan aminosyror minskade vid kanalens grind. Övriga intressanta grindmekanismer innefattade parning av aminosyror från loopen β4-β5 (Loop A) med aminosyror från sträckor β1 och β6 samt böjning av kanalen porangränsande helix. KL-divergens påvisades vara ett viktigt redskap för att filtrera tillgänglig data och de nya grindmekanismer kan bli användbara både för akademin, som vill reda ut GLIC:s fullständiga grindmekanismer, och läkemedelsföretag, som letar efter bindningsställen inom molekylen för att utveckla nya läkemedel. / GLIC is a transmembrane proton-gated pentameric ligand-gated ion channel (pLGIC) that is found in the prokaryote Gloeobacter violaceus. GLIC is the prokaryotic homolog to several receptors that are found in the nervous system of many eukaryotic organisms. These receptors are targets for the development of pharmaceutical drugs that interfere with the gating of these channels - such drugs involve anesthetics and stimulants. Understanding the mechanism of a drug’s target is a high priority for the development of a novel medicine. However, eukaryotic pLGICs are complex to analyse, because some of them are heteromeric, have more domains, and because of their post-translational modifications (PTMs). GLIC, on the other hand, has a simpler structure and it is enough to study the structure of only one subunit - since all subunits are identical. Several possible gating mechanisms have been proposed by the scientific community, but the complete gating of GLIC remains unclear. The goal of this project is to implement machine learning (ML) to discover novel gating mechanisms by computational approaches. The starting data was extracted from a previous research where computational tools like unbiased molecular dynamics (MD), elastic network-driven Brownian Dynamics (eBDIMS), and Markov state models (MSMs) were used. From those tools, the protein was simulated in wild-type and in a gain-of-function mutation at two different pH values. Five macrostates were constructed: two open, two closed, and an intermediate. In this project another ML tool was used: KL divergence. This tool was used to score the difference between the distance distributions of one open and one closed macrostate. The starting data was used to create a tensor that stored all residue-residue distances. Each residue pair had its own metadata, which in turn was used to yield the distance distributions of all five pre-build MSMs. Then the average KL scores between two states of interest were calculated and were used to filter out the residue pairs with overlapping distance distributions. To make sure that the residues within a pair can interact with each other, all residue pairs with very high minimum and average distance were filtered out as well. The residue pairs that remained were later evaluated across all five macrostates for further studies. Important novel mechanisms discovered in this project through both the KL divergence and the macrostate distributions involved the M2-M3 loop of one subunit and both the β8-β9 loop/N-terminal β9 strand and the preM1/N-terminal M1 region of the neighboring subunit. The β8-β9 loop (Loop F) showed high KL scores with the β1-β2 and β6-β7 (Pro-loop) loops as well with decreasing distances upon the channel’s opening. Other notable gating mechanisms involved are the pairing of residues from the β1-β2 loop (Loop A) with residues from the strands β1 and β6, as well as the kink of the pore-lining helix. KL divergence proved a valuable tool to filter available data and the novel mechanisms can prove useful both to the academic community that seeks to unravel the complete gating mechanism of GLIC and to the pharmaceutical companies that search for new binding sites within the molecule for new drugs.

Page generated in 0.0919 seconds