• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Traffic Matrix Estimation in IP Networks

Eum, Suyong, suyong@ist.osaka-u.ac.jp January 2007 (has links)
An Origin-Destination (OD) traffic matrix provides a major input to the design, planning and management of a telecommunications network. Since the Internet is being proposed as the principal delivery mechanism for telecommunications traffic at the present time, and this network is not owned or managed by a single entity, there are significant challenges for network planners and managers needing to determine equipment and topology configurations for the various sections of the Internet that are currently the responsibility of ISPs and traditional telcos. Planning of these sub-networks typically requires a traffic matrix of demands that is then used to infer the flows on the administrator's network. Unfortunately, computation of the traffic matrix from measurements of individual flows is extremely difficult due to the fact that the problem formulation generally leads to the need to solve an under-determined system of equations. Thus, there has been a major effort f rom among researchers to obtain the traffic matrix using various inference techniques. The major contribution of this thesis is the development of inference techniques for traffic matrix estimation problem according to three different approaches, viz: (1) deterministic, (2) statistical, and (3) dynamic approaches. Firstly, for the deterministic approach, the traffic matrix estimation problem is formulated as a nonlinear optimization problem based on the generalized Kruithof approach which uses the Kullback distance to measure the probabilistic distance between two traffic matrices. In addition, an algorithm using the Affine scaling method is developed to solve the constrained optimization problem. Secondly, for the statistical approach, a series of traffic matrices are obtained by applying a standard deterministic approach. The components of these matrices represent estimates of the volumes of flows being exchanged between all pairs of nodes at the respective measurement points and they form a stochastic counting process. Then, a Markovian Arrival Process of order two (MAP-2) is applied to model the counting processes formed from this series of estimated traffic matrices. Thirdly, for the dynamic approach, the dual problem of the multi-commodity flow problem is formulated to obtain a set of link weights. The new weight set enables flows to be rerouted along new paths, which create new constraints to overcome the under-determined nature of traffic matrix estimation. Since a weight change disturbs a network, the impact of weight changes on the network is investigated by using simulation based on the well-known ns2 simulator package. Finally, we introduce two network applications that make use of the deterministic and the statistical approaches to obtain a traffic matrix respectively and also describe a scenario for the use of the dynamic approach.
2

On the Analytic Assessment of the Impact of Traffic Correlation on Queues in Continuous Time Domain

Li, W., Kouvatsos, Demetres D., Fretwell, Rod J. 04 October 2016 (has links)
No / Given only the traffic correlations of counts and intervals, a Batch Renewal Arrival Process (BRAP) is completely determined, as the least biased choice and thus, it provides the analytic means to construct suitable traffic models for the study of queueing systems independently of any other traffic characteristics. In this context, the BRAP and the Batch Markovian Arrival Process (BMAP) are employed in the continuous time domain towards the analysis of the stable BRAP/GE/1 and BMAP/GE/1 queues with infinite capacity, single servers and generalized exponential (GE) service times. Novel closed form expressions for the steady state probabilities of these queues are obtained, based on the embedded Markov chains (EMCs) technique and the matrix-geometric (M-G) method, respectively. Moreover, the stable GEsGGeo/GE/1 queue with GE-type service times and a GEsGGeo BRAP consisting of bursty GE-type batch interarrival times and a shifted generalized geometric (sGGeo) batch size distribution is adopted to assess analytically the combined adverse effects of varying degrees of correlation of intervals between individual arrivals and the burstiness of service times upon the typical quality of service (QoS) measure of the mean queue length (MQL). Moreover, a comprehensive experimental study is carried out to investigate numerically the relative impact of count and interval traffic correlations as well as other traffic characteristics upon the performance of stable BRAP/GE/1 and BMAP/GE/1 queues. It is suggested via a conjecture that the BRAP/GE/1 queue is likely to yield pessimistic performance metrics in comparison to those of the stable BMAP/GE/1 queues under the worst case scenario (i.e., a worst case scenario) of the same positive count and interval traffic correlations arising from long sojourn in each phase.

Page generated in 0.0595 seconds