• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelagem estocástica de uma população de neurônios / Stochastic modelling of a population of neurons

Yaginuma, Karina Yuriko 08 May 2014 (has links)
Nesta tese consideramos uma nova classe de sistemas markovianos de partículas com infinitas componentes interagentes. O sistema representa a evolução temporal dos potenciais de membrana de um conjunto infinito de neurônios interagentes. Provamos a existência e unicidade do processo construindo um pseudo-algoritmo de simulação perfeita e mostrando que este algoritmo roda em um número finito de passos quase certamente. Estudamos também o comportamento do sistema quando consideramos apenas um conjunto finito de neurônios. Neste caso, construímos um procedimento de simulação perfeita para o acoplamento entre o processo limitado a um conjunto finito de neurônios e o processo que considera todos os neurônios do sistema. Como consequência encontramos um limitante superior para a probabilidade de discrepância entre os processos. / We consider a new class of interacting particle systems with a countable number of interacting components. The system represents the time evolution of the membrane potentials of an infinite set of interacting neurons. We prove the existence and uniqueness of the process, by the construction of a perfect simulation procedure. We show that this algorithm is successful, that is, we show that the number of steps of the algorithm is finite almost surely. We also study the behaviour of the system when we consider only a finite number of neurons. In this case, we construct a perfect simulation procedure for the coupling of the process with a finite number of neurons and the process with a infinite number of neurons. As a consequence we obtain an upper bound for the error we make when sampling from a finite set of neurons instead of the infinite set of neurons.
2

Modelagem estocástica de uma população de neurônios / Stochastic modelling of a population of neurons

Karina Yuriko Yaginuma 08 May 2014 (has links)
Nesta tese consideramos uma nova classe de sistemas markovianos de partículas com infinitas componentes interagentes. O sistema representa a evolução temporal dos potenciais de membrana de um conjunto infinito de neurônios interagentes. Provamos a existência e unicidade do processo construindo um pseudo-algoritmo de simulação perfeita e mostrando que este algoritmo roda em um número finito de passos quase certamente. Estudamos também o comportamento do sistema quando consideramos apenas um conjunto finito de neurônios. Neste caso, construímos um procedimento de simulação perfeita para o acoplamento entre o processo limitado a um conjunto finito de neurônios e o processo que considera todos os neurônios do sistema. Como consequência encontramos um limitante superior para a probabilidade de discrepância entre os processos. / We consider a new class of interacting particle systems with a countable number of interacting components. The system represents the time evolution of the membrane potentials of an infinite set of interacting neurons. We prove the existence and uniqueness of the process, by the construction of a perfect simulation procedure. We show that this algorithm is successful, that is, we show that the number of steps of the algorithm is finite almost surely. We also study the behaviour of the system when we consider only a finite number of neurons. In this case, we construct a perfect simulation procedure for the coupling of the process with a finite number of neurons and the process with a infinite number of neurons. As a consequence we obtain an upper bound for the error we make when sampling from a finite set of neurons instead of the infinite set of neurons.

Page generated in 0.0932 seconds