• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Methods of optimizing investment portfolios

Seepi, Thoriso P.J. January 2013 (has links)
>Magister Scientiae - MSc / In this thesis, we discuss methods for optimising the expected rate of return of a portfolio with minimal risk. As part of the work we look at the Modern Portfolio Theory which tries to maximise the portfolio's expected rate of return for a cer- tain amount of risk. We also use Quadratic Programming to optimise portfolios. Generally it is recognised that portfolios with a high expected return, carry higher risk. The Modern Portfolio Theory assists when choosing portfolios with the lowest possible risk. There is a nite number of assets in a portfolio and we therefore want to allocate them in such a way that we're able to optimise the expected rate of return with minimal risk. We also use the Markowian approach to allocate these assets. The Capital Asset Pricing Model is also used, which will help us to reduce our e cient portfolio to a single portfolio. Furthermore we use the Black-Litterman model to try and optimise our portfolio with a view to understanding the current market conditions, as well as considering how the market will perform in the future. An additional tool we'll use is Value at Risk. This enables us to manage the market risk. To this end, we follow the three basic approaches from Jorion [Value at Risk. USA: McGraw-Hills, 2001]. The Value at Risk tool has become essential in calcu- lating a portfolio's risk over the last decade. It works by monitoring algorithms in order to nd the worst possible scenarios within the portfolio. We perform several numerical experiments in MATLAB and Microsoft Excel and these are presented in the thesis with the relevant descriptions.

Page generated in 0.1103 seconds