Spelling suggestions: "subject:"dehnmaschine 1earning"" "subject:"dehnmaschine c1earning""
1 |
Approaching Concept Drift by Context Feature PartitioningHoffmann, Nico, Kirmse, Matthias, Petersohn, Uwe 20 February 2012 (has links) (PDF)
In this paper we present a new approach to handle concept drift using domain-specific knowledge. More precisely, we capitalize known context features to partition a domain into subdomains featuring static class distributions. Subsequently, we learn separate classifiers for each sub domain and classify new instances accordingly. To determine the optimal partitioning for a domain we apply a search algorithm aiming to maximize the resulting accuracy. In practical domains like fault detection concept drift often occurs in combination with imbalances data. As this issue gets more important learning models on smaller subdomains we additionally use sampling methods to handle it. Comparative experiments with artificial data sets showed that our approach outperforms a plain SVM regarding different performance measures. Summarized, the partitioning concept drift approach (PCD) is a possible way to handle concept drift in domains where the causing context features are at least partly known.
|
2 |
A survey of approaches to automatic schema matchingRahm, Erhard, Bernstein, Philip A. 19 October 2018 (has links)
Schema matching is a basic problem in many database application domains, such as data integration, E-business, data warehousing, and semantic query processing. In current implementations, schema matching is typically performed manually, which has significant limitations. On the other hand, previous research papers have proposed many techniques to achieve a partial automation of the match operation for specific application domains. We present a taxonomy that covers many of these existing approaches, and we describe the approaches in some detail. In particular, we distinguish between schema-level and instance-level, element-level and structure-level, and language-based and constraint-based matchers. Based on our classification we review some previous match implementations thereby indicating which part of the solution space they cover. We intend our taxonomy and review of past work to be useful when comparing different approaches to schema matching, when developing a new match algorithm, and when implementing a schema matching component.
|
3 |
Design und Implementierung eines Algorithmus zum maschinellen Lernen der Flexion eines Korpus deutscher SpracheMoritz, Julian 20 October 2017 (has links)
Die vorliegende Arbeit beschreibt das Design und die Implementierung eines Algorithmus zur Flexion. Es wird am Beispiel des Deutschen eine konkrete Implementierung entwickelt. Hierfür findet zunächst eine ausführliche Analyse der Flexion des Deutschen statt, bevor ein Verfahren erarbeitet wird, das sprachunabhängig ist und somit prinzipiell auf andere Sprachen übertragen werden kann. Die tatsächliche Machbarkeit des Verfahrens wird anhand von Beispielen nachgewiesen. Die hohe Komplexität der Aufgabe führt allerdings dazu, dass es in der Praxis zu Abstrichen bei der Qualität der flektierten Wortformen kommt. Dies ist insbesondere deswegen der Fall, da das entwickelte System auch ihm unbekannte Grundformen flektiert.
|
4 |
Approaching Concept Drift by Context Feature PartitioningHoffmann, Nico, Kirmse, Matthias, Petersohn, Uwe 20 February 2012 (has links)
In this paper we present a new approach to handle concept drift using domain-specific knowledge. More precisely, we capitalize known context features to partition a domain into subdomains featuring static class distributions. Subsequently, we learn separate classifiers for each sub domain and classify new instances accordingly. To determine the optimal partitioning for a domain we apply a search algorithm aiming to maximize the resulting accuracy. In practical domains like fault detection concept drift often occurs in combination with imbalances data. As this issue gets more important learning models on smaller subdomains we additionally use sampling methods to handle it. Comparative experiments with artificial data sets showed that our approach outperforms a plain SVM regarding different performance measures. Summarized, the partitioning concept drift approach (PCD) is a possible way to handle concept drift in domains where the causing context features are at least partly known.
|
Page generated in 0.0534 seconds