• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rôle des cellules myéloïdes immatures GR1+CD11b+ dans le rejet du mastocytome P815 / Role of GR1+CD11b+ myeloid immature cells on P815 mastocytoma rejection

Lanaya, Hanane 20 June 2008 (has links)
The failure of the immune system to provide efficient protection against tumour cells has been considered as a major issue in immunology. It is now well established that inadequate function of the host immune system is one of the main mechanisms by which tumours escape from immune control contributing to the limited success of cancer immunotherapy. Several cell populations have been described which display immunosuppressive properties and may impede tumor-specific immunity. Among them, GR1+CD11b+ immature myeloid suppressor cells and CD4+CD25+ regulatory T cells seem to play an important role. These cells accumulate in the spleens of tumour bearing mice and patients with cancer and contribute to immunosuppression by inhibiting the function of CD8+ T cells and/or by promoting tumour angiogenesis.<p><p>The aim of our work was to define the mechanisms by which a single dose of cyclophosphamide (CTX), a chemical agent commonly used in chemotherapy treatment, induces the rejection of established P815 mastocytoma. <p><p>Our data show that CTX treatment leads to the selective loss of GR1medCD11b+ splenic myeloid cell producing TGF-â, a cytokine which is known to suppress antitumoral response. Furthermore, injection of CTX causes a decrease in the number of naturally occurring regulatory T cells (CD4+CD25+Foxp3+) in the spleen and the tumor. Finally, CTX treatment induces the differentiation of GR1highCD11b+ splenic myeloid cells into mature GR1highCD11b+CD11c+ (possibly dendritic cells?) which express high levels of CD11c, MHC class II and CD86 molecules. Of note, these cells are mainly detected in tumour necrosis areas. <p><p>Collectively, these results suggest that CTX prevents suppressive mechanisms and induces a population of CD11c+ myeloid cells which may present tumor antigens and activate T lymphocytes, an hypothesis in line with the requirement for CD4+ cells in CTX-induced long term resistance. <p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
2

Mechanism of Transformation and Therapeutic Targets for Hematological Neoplasms Harboring Oncogenic KIT Mutation

Martin, Holly René January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Gain-of-function mutations in the KIT receptor tyrosine kinase have been associated with highly malignant human neoplasms. In particular, an acquired somatic mutation at codon 816 in the second catalytic domain of KIT involving an aspartic acid to valine substitution is found in patients with systemic mastocytosis (SM) and acute myeloid leukemia (AML). The presence of this mutation in SM and AML is associated with poor prognosis and overall survival. This mutation changes the conformation of the KIT receptor resulting in altered substrate recognition and constitutive tyrosine autophosphorylation leading to constitutive ligand independent growth. As there are currently no efficacious therapeutic agents against this mutation, this study sought to define novel therapeutic targets that contribute to aberrant signaling downstream from KITD816V that promote transformation of primary hematopoietic stem/progenitor cells in diseases such as AML and SM. This study shows that oncogenic KITD814V (murine homolog) induced myeloproliferative neoplasms (MPN) occurs in the absence of ligand stimulation, and that intracellular tyrosines are important for KITD814V-induced MPN. Among the seven intracellular tyrosines examined, tyrosine 719 alone has a unique role in regulating KITD814V-induced proliferation and survival. Residue tyrosine 719 is vital for activation of the regulatory subunit of phosphatidylinositol 3-kinase (PI3K), p85α, downstream from KITD814V. Downstream effectors of the PI3K signaling pathway, in of leukemic cells bearing KITD814V with an allosteric inhibitor of Pak or its genetic inactivation results in growth repression due to enhanced apoptosis. To assess the role of Rac GEFs in KITD814V induced transformation, EHop-016, an inhibitor of Rac, was used to specifically target Vav1, and found to be a potent inhibitor of human and murine leukemic cell growth. In vivo, the inhibition of Vav or Rac or Pak delayed the onset of MPN and rescued the associated pathology in mice. These studies provide insight on mechanisms and potential novel therapeutic targets for hematological malignancies harboring an oncogenic KIT mutation.

Page generated in 0.0624 seconds