• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Grain refinement in aluminium containing magnesium alloys

Joshi, Utsavi Mukeshbhai January 2016 (has links)
The novel grain refiners developed in this research could be broadly classified into borides and carbides. The motive behind choosing MgB2, AlB2 and their master alloys Mg-MgB2 and Mg-AlB2 as the grain refiners was driven by the crystallographic matching of the hexagonal borides with the magnesium crystal structure. Apart from this lightweight borides, denser borides such as CrB and WB have also shown excellent grain refinement in AZ91, AM50 and AZ31 alloys. It is suggested that the grain refinement effect in the magnesium alloys could be improved through a combined addition of bismuth along with the boride. The carbon based grain refiners were also explored as they are well-established for the grain refinement of aluminium containing magnesium alloys. The new carbon based grain refiners identified through this research are B4C, Mg-B4C, Mg-3Ti-1C. Magnesium matrix was chosen for the development of each of these master alloys to eliminate any impurity contamination during the grain refiner addition to the magnesium melt. The pressureless melt infiltration techniques was involved in the development of Mg-MgB2, Mg-AlB2 and Mg-B4C while, the ‘halide salt route’ was adopted for producing Mg-3Ti-1C master alloys. The application of ultrasonic cavitation for the development of a new Al-1.5B-2C master alloy was shown to be effective for a homogenous distribution of the intermetallic phases in the form of Al3BC. The potential heterogeneous nucleating sites proposed in the commercial aluminium containing magnesium alloys are MgB2 for Mg-MgB2 master alloy; Mg1-xAlxB2 (0.10 < x < 0.18) for AlB2 grain refiner; MgB2C2 for B4C grain refiner; CrB and WB for their individual powder additions respectively; Ti2AlC for Mg-3Ti-1C master alloy; Al3BC and Al4C3 for the Al-1.5B-2C master alloy.
2

Densification by cold re-pressing of low-carbon managese steels

Mitchell, Stephen C., Bäumgartner, F. January 2005 (has links)
Yes / Obtaining closed porosity, i.e. densities >7.4 g.cm-3, is a major target in PM development. To increase density, strength and surface hardness of low-carbon PM steels: cold and warm compaction, sintering and slow cooling through the ferrite transformation region, followed by cold repressing and surface hardening were investigated. The slow cooling resulted in soft, ferritic, microstructure amenable to cold resizing. Repressing at 700-900 MPa densified the samples to ~7.6 g.cm-3. Mechanical properties, after repressing and surface hardening, are characterised by appreciable plasticity following macroscopic yielding at stresses of 400-1200 MPa. Reference is made to possible further increases in strength by incorporation of small additions of clean, fine Mn containing master alloy into the powder mix. Results were verified industrially on hollow cylinders made from Fe-0.5Mo or Fe-1.5Cr-0.2Mo base powders.
3

Development of niobium boron grain retainer for aluminium silicon alloys

Nowak, Magdalena January 2011 (has links)
Aluminium castings with a large grain structure have poor mechanical properties which are primarily due to casting defects as opposed to fine grain structure. The grain refinement practice using chemical addition is well established for wrought alloys, however in the case of casting alloys, the practice of adding grain refiners and the impact on castability is not well established. The addition of well known Al-5Ti-B grain refiner to casting alloys with silicon (Si) content above 3 wt.% is not effective. This is believed to be due to the chemical reaction between Ti and Si. The current research aim is to find an alternative, but effective, chemical phase which can refine Al-Si alloy grains. Based on a crystallographic database search and intermetallic phases found in Aluminium–Niobium-Boron, there exists several iso-structural phases similar to those of Al3Ti and TiB2. We have selected a phase which exhibits chemical phase stability with Si (below 900 oC) and developed a potential novel grain refiner Nb-B for Al-Si cast alloys. Various Al-Si binary alloys and a commercial sourced LM6 (Al-10Si-Mg) cast alloys were cast after novel grain refiner addition to the melt. It is the first time that such fine grain structures were achieved for Al-Si alloys when Si >4wt.%. It is believed that Nb-B grain refiner enhances the heterogeneous nuclei in the melt. The effectiveness of this grain refiner under various cooling rate conditions is investigated to simulate various practical casting conditions. Due to increased heterogeneous nuclei density, a fine grain structure is also obtained at low cooling rates and the grain size is less sensitive to the cooling rate. The processing of high Si containing alloys for complex shaped castings with reduced defects, fine grain structure and improved mechanical properties are now possible.
4

Design of cemented carbide with Ni-based superalloy binder strengthened with y’-Ni3Al precipitates

Edholm, Oscar January 2018 (has links)
Replacement of cobalt in cemented carbides has gained in attention recently because threats of regulations due to health issues (cancerogenic effect), increased demand from the electric vehicle industry and the questionable extraction from countries like Democratic Republic of Congo. In this report the use of Ni-based binder as an alternative binder for cemented carbides has been explored. The design is based on producing a Ni-based superalloy binder which contains dispersed Ni3Al Gamma Prime (γ’) -phase precipitates in the binder matrix. The investigation focuses on the design of cemented carbide compositions and processes that ensures the formation of γ’- precipitates, the control of their morphology and distribution as well as the effect of heat treatment. To do this a Ni-Al master alloy has been designed that enables the formation of γ’-precipitates in WC-Ni-Al-X systems, produced by conventional powder metallurgy process including standard free sintering. Furthermore, the addition of usual elements in the cemented carbide industry (such as Ti, Cr, Ta, Nb) and their effect on the stability of γ’-precipitates has been investigated. A method to reveal the precipitates including ion-polishing and electro-etching has been developed. Basic mechanical properties such as hardness and toughness have been investigated, revealing particular crack propagation in Ni-based binder reinforced with γ’-precipitates. It was found that the common variables in cemented carbide manufacturing influence all aspects regarding the stability of γ’-phase. By varying the powder type, binder composition and content, the carbon balance, the WC grain size and the heating/cooling steps; the formation of γ’-precipitates (size, morphology, distribution, etc.) can be controlled to tailor the properties of the cemented carbide. / Att hitta en ersättning av kobolt i hårdmetall har nyligen uppmärksammats bl.a. eftersom regleringar hotar användning av ämnet pga. dess cancerogenitet, en ökande efterfrågan från elfordonsindustrin samt den moraliskt tvivelaktiga utvinningen som sker i länder som Demokratiska Republiken Kongo. I denna rapport har användningen av ett nickel-baserat bindemedel som ett alternativt bindemedel för hårdmetaller undersökts. Designen är baserad på att producera en nickel-baserad superlegering som bindemedel som innehåller dispergerad Ni3Al Gamma Prim (γ’) – fas utfälld i bindemedlet. Utredningen fokuserar på designen av hårdmetallskompositioner och processer som försäkrar formationen av γ’-utfällningar, kontroller av dess morfologi, distributionen samt hur värmebehandlingar påverkar. För att kunna göra detta har en Ni-Al masterlegering skapats som möjliggör γ’-utfällningar i ett WC-Ni-Al-X system, producerat med konventionell pulvermetallurgiprocess inkluderat standard fri sintring. Dessutom har tillsatsen av vanliga ämnen i hårdmetallindustrin (such as TI, Cr, Ta, Nb) samt deras effekt på stabiliteten hos γ’-utfällningarna undersökts. En metod för att upptäcka utfällningarna, som inkluderar jonpolering och elektroetsning har utvecklats. Grundläggande mekaniska egenskaper som hårdhet och seghet har undersökts, vilket har avslöjat en speciell sprickutbredning i den nickelbaserade bindaren förstärkt med γ’-utfällningar. Det visade sig att de vanliga variablerna förenade med tillverkning av hårdmetall påverkar samtliga aspekter gällande stabiliteten hos γ’-utfällningar. Genom att variera pulvertyp, bindemedelkomposition och innehåll, kolbalansen, WC-kornstorlek och uppvärmning samt kylningssteg så påverkas bildningen av γ’-utfällningar (storlek, morfologi, distribution, etc..) som kan kontrolleras för att skräddarsy egenskaperna för hårdmetallen.

Page generated in 0.0623 seconds