• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Whiskey is for Drinking; Water is for Fighting Over: Population Growth, Infrastructure Change, and Conservation Policy as Drivers of Residential Water Demand

January 2014 (has links)
abstract: As urban populations grow, water managers are becoming increasingly concerned about water scarcity. Water managers once relied on developing new sources of water supply to manage scarcity but economically feasible sources of unclaimed water are now rare, leading to an increased interest in demand side management. Water managers in Las Vegas, Nevada have developed innovative demand side management strategies due to the cities rapid urbanization and limited water supply. Three questions are addressed. First, in the developed areas of the Las Vegas Valley Water District service areas, how did vegetation area change? To quantify changes in vegetation area, the Matched Filter Vegetation Index (MFVI) is developed from Mixture Tuned Match Filtering estimates of vegetation area calibrated against vegetation area estimates from high-resolution aerial photography. In the established city core, there was a small but significant decline in vegetation area. Second, how much of the observed decline in per capita consumption can be explained by Las Vegas land cover and physical infrastructure change that resulted from extensive new construction and new use of water conserving technology, and how much can be attributed to water conservation policy choices? A regression analysis is performed, followed by an analysis of three counter-factual scenarios to decompose reductions in household water into its constituent parts. The largest citywide drivers of change in water consumption were increased water efficiency associated with new construction and rapid population growth. In the established urban core, the most significant driver was declining vegetation area. Third, water savings generated by a conservation program that provides incentives for homeowners to convert grass into desert landscaping are estimated. In the city core, 82 gallons of water are saved in June for each square meter of landscape converted in the first year after conversion, but the savings attenuate to 33 gallons per meter converted as the landscape ages. Voluntary landscape conversion programs can generate substantial water savings. The most significant result is that the most effective way to ensure long term, sustainable reductions in water consumption in a growing city without changing water prices is to support the construction of water efficient infrastructure. / Dissertation/Thesis / Doctoral Dissertation Sustainability 2014
2

Comprehensive study of seismic waveform similarity: applications to reliable identification of repeating earthquakes and investigations of detailed source process of induced seismicity

Gao, Dawei 05 May 2021 (has links)
This Ph.D. dissertation focuses on a comprehensive study of seismic waveform similarity aiming at two themes: (1) reliable identification of repeating earthquakes (repeaters) and (2) investigation of the detailed source process of induced seismicity through the three-dimensional spatiotemporal evolution of mainly neighbouring earthquakes. Theme 1: Reliable identification of repeaters. Repeaters, occurring repeatedly on the same fault patch with nearly identical waveforms, are usually identified with the match-filtering (MF) method which essentially measures the degree of waveform similarity between an earthquake pair through the corresponding cross-correlation coefficient (CC). However, the performance of the MF method can be severely affected by the length of the cross‐correlation window, the frequency band of the applied digital filter, and the presence of a large‐amplitude wave train. To optimize the performance of MF, I first examine the effects of different operational parameters and determine generic rules for selecting the window length and the optimal frequency passband. To minimize the impact of a large‐amplitude wave train, I then develop a new method, named the match-filtering with multisegment cross-correlation (MFMC) method. By equally incorporating the contributions from various segments of the waveforms, the new method is much more effective in capturing the minor waveform discrepancy between an event pair due to location difference and hence is more reliable in detecting potential repeaters and discriminating non-repeaters with large inter-event separation. With both synthetic and borehole array waveform data, I further reveal that waveform similarity is controlled by not only the inter-event separation but also many other factors, including station azimuth, epicentral distance, velocity structure, etc. Therefore, in contrast to the traditional view, the results indicate that waveform similarity alone is insufficient to unambiguously identify true repeaters. For reliable repeater identification, we should rely on a physics-based approach considering both the overlapped source area and magnitude difference. Specifically, I define an event pair to be true repeaters if their inter-event separation is smaller than the rupture radius of the larger event and their magnitude difference is no more than 1. For the precise estimation of inter-event distance in cases of limited data, I develop the differential traveltime double-difference (DTDD) method which relies on the relative S-P differential traveltime. The findings of this study imply that previously identified repeaters and their interpretations/hypotheses potentially can be biased and hence may need a systematic reexamination. Theme 2: Investigation of the detailed source process of induced seismicity. Earthquakes induced by hydraulic fracturing (HF), especially those with large magnitudes, are often observed to have occurred near/after well completion. The delayed triggering of induced seismicity with respect to injection commencement poses serious challenges for risk mitigation and hazard assessment. By performing waveform cross-correlation and hierarchical clustering analysis, I reveal a high-resolution three-dimensional source migration process with mainshock delayed triggering that is probably controlled by local hydrogeological conditions. The results suggest that poroelastic effects might contribute to induced seismicity but are likely insufficient to activate a non-critically stressed fault of sufficient size. My analysis shows that the rapid pore-pressure build-up from HF can be very localized and capable of producing large, felt earthquakes on non-critically stressed fault segments. I further infer that the number of critically stressed, large intraplate faults should be very limited, and that reactivation of such faults may require sufficient pore-pressure accumulation. The findings of this study may also explain why so few fluid injections are seismogenic. / Graduate

Page generated in 0.1136 seconds