• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • Tagged with
  • 9
  • 9
  • 9
  • 9
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bio-active constituent from Yinqiaosan has anti-influenza and anit-inflammatory effect

Law, Hing-yee, 羅興怡 January 2014 (has links)
Influenza epidemics have become a major public health concern worldwide. According to the World Health Organization, the annual epidemics results in about three to five million cases of severe illness, and about 250 to 500 thousand deaths. Recurring emergence of new influenza viruses and viruses that are resistant to currently approved antiviral medications pose a critical need to explore new or alternative medications. A classical Traditional Chinese Medicine (TCM) decoction consisting of nine herbs, named Yinqiaosan (YQS, 銀翹散), has a long history for treating respiratory diseases in China. However, the efficacy of YQS has not been investigated mechanistically. In the present study, the effectiveness of YQS in treating influenza virus infection was examined. The potential mechanisms of action of two active compounds present in one of the component herbs of YQS were also investigated. Results showed that YQS increased the survival rate of the mice in an in vivo influenza virus infection model with significant reduction in lung viral titers. In order to further delineate the mechanisms of action of YQS, compounds present in a principal ingredient of YQS were examined for antiviral and immunomodulatory effects. In screening a panel of fractions extracted from YQS, forsythoside A was demonstrated to suppress the viral titers of a wide range of influenza viruses including the oseltamivir-resistant and the 2009 pandemic H1N1 viruses. Through electron microscopy, slow or abnormal viral budding events were observed upon forsythoside A treatment during influenza virus infection. Western blot analysis revealed a reduced influenza virus M1 protein expression. As previous report showed that assembly of viral components into an infectious particle required a threshold level of M1 protein, reduced M1 expression in the cells treated with forsythoside A may contribute to the virus replication suppression. On the other hand, innate immune responses provide first line protection against influenza virus infections. However, excessive responses often result in tissue damage. Cyclooxygenase (COX)-2 is an immunomodulatory factor that has been shown to play a role in the pathogenesis of influenza viruses. A previous COX-2 knock-out mice model showed that COX-2 deficiency is beneficial to the host during influenza viral infection, in which mortality was significantly reduced. Furthermore, during H5N1 infection, it has been shown that COX-2 level significantly increased and it played an essential role in coordinating the productions of inflammatory cytokines, while in another study, pharmacological inhibition of COX-2 suppressed H5N1 virus replication in primary human macrophages. In view of the roles of COX-2 during influenza virus infection, the presence of compound in YQS that reduces the influenza virus-induced COX-2 level was examined. Present results showed that jacaranone not only reduced the influenza virus-induced cyclooxygenase (COX)-2 mRNA level, it also suppressed the subsequent production of prostaglandin E2 level in primary human macrophages. At the same time, jacaranone inhibited the virus induced-activations of ERK1/2 and Akt, which are involved in the COX-2 induction. Jacaranone also suppressed, at least in part, the COX-2 mRNA level at the transcriptional level by inhibiting the nuclear translocation of NF-κB. To conclude, TCM has been recognized as an important part in complementary and alternative medicine and it is an ample source of antimicrobial drugs. The use of a mixture of herbs is the major therapeutic approach of TCM in which, the principal ingredients provide the main therapeutic actions while the others enhance the effects or diminish the side effects of the principal ones. Some components act mainly for symptomatic control. The present study not only supports the efficacy of YQS, but also gives evidences to an active antiviral compound and an immunomodulatory compound found in YQS. They may act as either principle or supporting components depending on the purpose of application. This study provides new insights on future novel drug development from the existing wisdom of TCM. / published_or_final_version / Paediatrics and Adolescent Medicine / Doctoral / Doctor of Philosophy
2

Development of analytical methodologies for the determination of metals and organic acids in environmental and traditional Chinesemedicine studies by capillary electrophoresis

董豪珊, Tung, Ho-shan. January 2000 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
3

Phytochemical investigation of plants used in traditional medicine in Hong Kong

徐永欣, Tsui, Wing-yan, Pamela. January 1996 (has links)
The Best M.Phil Thesis in the Faculties of Dentistry, Engineering, Medicine and Science (University of Hong Kong), Li Ka Shing Prize,1995-1997 / published_or_final_version / Chemistry / Master / Master of Philosophy
4

Exploring molecular targets and active compounds from buyang huanwu decoction for promoting neurogenesis in post-ischemic stroke treatment

Chen, Xi, 陈曦 January 2013 (has links)
abstract / Chinese Medicine / Doctoral / Doctor of Philosophy
5

Phytochemical study on Rhodiola kirilowii.

January 2007 (has links)
Wong, Ying Chun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 73-78). / Abstracts in English and Chinese. / Acknowledgements --- p.I / Abstract --- p.II / 摘要 --- p.IV / List of Tables --- p.VI / List of Figures --- p.VII / List of Abbreviations --- p.VIII / Chapter Chapter 1 --- Introduction --- p.3 / Chapter 1.1 --- Chemical Constituents of Rhodiola Genus --- p.5 / Chapter 1.1.1 --- Phenylethyl Derivatives --- p.5 / Chapter 1.1.2 --- Phenylpropanoids --- p.8 / Chapter 1.1.3 --- Phenolic Derivatives --- p.11 / Chapter 1.1.4 --- Flavonoids --- p.14 / Chapter 1.1.4.1 --- Flavone and Flavone Glycosides --- p.15 / Chapter 1.1.4.2 --- Flavonols and Their Glycosides --- p.17 / Chapter 1.1.4.3 --- Flavan-3-ol Derivatives --- p.23 / Chapter 1.1.5 --- Monoterpenoids --- p.26 / Chapter 1.1.6 --- Triterpenes --- p.30 / Chapter 1.1.7 --- Miscellaneous Compounds --- p.32 / Chapter 1.2 --- Biological Activities of Rhodiola Genus --- p.33 / Chapter 1.2.1 --- Anti-oxidative Effect --- p.34 / Chapter 1.2.1.1 --- Protective Effect on Ischemia and Reperfusion --- p.34 / Chapter 1.2.1.2 --- Anti-Aging Effect --- p.35 / Chapter 1.2.2 --- Learning and Memory --- p.36 / Chapter 1.2.3. --- Immune Response --- p.37 / Chapter 1.2.4 --- Anti-cancer Effect --- p.38 / Chapter 1.3 --- Objective --- p.39 / Chapter Chapter 2 --- Experimental --- p.40 / Chapter 2.1 --- General Experimental Procedures --- p.40 / Chapter 2.2 --- Plant Materials --- p.40 / Chapter 2.3 --- Extraction and Isolation --- p.41 / Chapter 2.3.1 --- Isolation and Purification of the Ethyl Acetate (E.A.) Fraction --- p.41 / Chapter 2.3.2 --- Isolation and Purification of the Butanol Fraction --- p.44 / Chapter 2.4 --- Characterization of the Isolated Compounds --- p.46 / Chapter 2.4.1 --- β-Sitosterol (1) --- p.46 / Chapter 2.4.2 --- Tyrosol (2) --- p.46 / Chapter 2.4.3 --- trans-Hydroxycinnamic acid (3) --- p.47 / Chapter 2.4.4 --- Geranyl-β-glucopyranoside (4) --- p.47 / Chapter 2.4.5 --- Neryl-β-glucopyranoside (5) --- p.48 / Chapter 2.4.6 --- Hexyl β-Glucopyranoside (6) --- p.48 / Chapter 2.4.7 --- Gallic Acid (7) --- p.49 / Chapter 2.4.8 --- Epigallocatechin-3-Gallate (8) --- p.49 / Chapter 2.4.9 --- Rhodiolgin (9) --- p.50 / Chapter 2.4.10 --- lsolariciresinol-9-β-Glucopyranoside (10) --- p.51 / Chapter 2.4.11 --- Rhodiooctanoside (11) --- p.52 / Chapter 2.4.12 --- Sacranoside B (12) --- p.52 / Chapter Chapter 3 --- Results and Discussion --- p.53 / Chapter 3.1 --- Structural Determination of the Isolated Compounds --- p.53 / Chapter 3.1.1 --- Identification of β-sitosterol (1) --- p.53 / Chapter 3.1.2 --- Identification of Tyrosol (2) --- p.54 / Chapter 3.1.3 --- Identification of trans-Hydroxycinnamic Acid (3) --- p.55 / Chapter 3.1.4 --- Identification of Geranyl-jS-glucopyranoside (4) --- p.56 / Chapter 3.1.5 --- Identification of Neryl-β-glucopyranoside (5) --- p.58 / Chapter 3.1.6 --- Identification of Hexyl β-Glucopyranoside (6) --- p.59 / Chapter 3.1.7 --- Identification of Gallic Acid (7) --- p.60 / Chapter 3.1.8 --- Identification of (-)-Epigallocatechin 3-Gallate (8) --- p.61 / Chapter 3.1.9 --- Identification of Rhodiolgin (9) --- p.63 / Chapter 3.1.10 --- Identification of lsolariciresinol-9-β-glucopyranoside (10) --- p.65 / Chapter 3.1.11 --- Identification of Rhodiooctanoside (11) --- p.67 / Chapter 3.1.12 --- Identification of Sacranoside B (12) --- p.69 / Chapter Chapter 4 --- Conclusion --- p.70 / References --- p.73
6

Evaluation of xanthine oxidase inhibitory and antioxidant activities of compounds from natural sources.

January 2005 (has links)
Lam Rosanna Yen Yen. / Thesis submitted in: September 2004. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 142-154). / Abstracts in English and Chinese. / Abstract --- p.i / Chinese Abstract --- p.iii / Acknowledgements --- p.v / Table of Contents --- p.vi / List of Abbreviations --- p.xii / List of Figures --- p.xv / List of Tables --- p.xix / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Reactive oxygen species --- p.1 / Chapter 1.1.1 --- Intracellular sources of ROS --- p.1 / Chapter 1.1.2 --- Extracellular sources of ROS --- p.2 / Chapter 1.1.3 --- Superoxide anion radicals --- p.2 / Chapter 1.1.4 --- Hydrogen peroxide --- p.3 / Chapter 1.1.5 --- Hydroxyl radicals --- p.3 / Chapter 1.1.6 --- Singlet oxygen --- p.4 / Chapter 1.1.7 --- Peroxyl radicals and peroxides --- p.4 / Chapter 1.1.8 --- Damage of cellular structures by ROS --- p.5 / Chapter 1.2 --- Antioxidative defence in the body --- p.6 / Chapter 1.2.1 --- Antioxidant proteins --- p.6 / Chapter 1.2.2 --- Antioxidant enzymes --- p.6 / Chapter 1.2.3 --- Antioxidant compounds --- p.7 / Chapter 1.2.3.1 --- Vitamin E --- p.8 / Chapter 1.2.3.2 --- Vitamin C --- p.9 / Chapter 1.2.3.3 --- Glutathione --- p.9 / Chapter 1.2.3.4 --- Urate --- p.9 / Chapter 1.2.3.4.1 --- Purine metabolism --- p.10 / Chapter 1.2.3.4.2 --- Xanthine oxidase --- p.12 / Chapter 1.2.4 --- Oxidative stress and antioxidant defence mechanisms in RBC --- p.12 / Chapter 1.2.5 --- Oxidative stress and antioxidant defence mechanisms in LDL --- p.16 / Chapter 1.3 --- Human diseases originated from pro-oxidant conditions --- p.16 / Chapter 1.3.1 --- Atherosclerosis --- p.17 / Chapter 1.3.2 --- Ischemia /reperfusion injury --- p.17 / Chapter 1.3.3 --- Glucose-6-phosphate dehydrogenase deficiency --- p.18 / Chapter 1.3.4 --- DNA mutation --- p.18 / Chapter 1.3.5 --- Other pro-oxidant state related diseases --- p.19 / Chapter 1.4 --- Hyperuricemia and gout: diseases originated from an extreme antioxidant condition --- p.19 / Chapter 1.4.1 --- Inhibition of XOD as a treatment method for hyperuricemia --- p.20 / Chapter 1.4.2 --- Relationship between ROS injury and hyperuricemia --- p.22 / Chapter 1.5 --- Antioxidants in human nutrition --- p.23 / Chapter 1.6 --- Chinese medicinal therapeutics --- p.23 / Chapter 1.6.1 --- Rhubarb --- p.25 / Chapter 1.6.2 --- Aloe --- p.26 / Chapter 1.6.3 --- Ginger --- p.27 / Chapter 1.6.4 --- Objectives of the project --- p.30 / Chapter 1.6.5 --- Strategies applied to achieve the objectives of the present project --- p.30 / Chapter Chapter 2 --- Materials and methods --- p.31 / Chapter 2.1 --- XOD inhibition assay --- p.31 / Chapter 2.1.1 --- Assay development --- p.31 / Chapter 2.1.2 --- Dose-dependent study --- p.32 / Chapter 2.1.3 --- Reversibility of the enzyme inhibition --- p.32 / Chapter 2.1.4 --- Lineweaver-Burk plots --- p.33 / Chapter 2.2 --- Lipid peroxidation inhibition assay of mouse liver microsomes --- p.34 / Chapter 2.2.1 --- Preparation of mouse liver microsomes --- p.34 / Chapter 2.2.2 --- Basis of assay --- p.34 / Chapter 2.2.3 --- Assay procedures --- p.35 / Chapter 2.3 --- AAPH-induced hemolysis inhibition assay --- p.36 / Chapter 2.3.1 --- Preparation of RBC --- p.36 / Chapter 2.3.2 --- Basis of assay --- p.36 / Chapter 2.3.3 --- Assay procedures --- p.37 / Chapter 2.4 --- Lipid peroxidation inhibition assay of RBC membrane --- p.38 / Chapter 2.4.1 --- Preparation of RBC membrane --- p.38 / Chapter 2.4.2 --- Basis of assay --- p.39 / Chapter 2.4.3 --- Assay procedures --- p.40 / Chapter 2.5 --- ATPase protection assay --- p.41 / Chapter 2.5.1 --- Preparation of RBC membrane --- p.41 / Chapter 2.5.2 --- Preparation of malachite green (MG) reagent --- p.41 / Chapter 2.5.3 --- Basis of assay --- p.41 / Chapter 2.5.4 --- Assay procedures --- p.42 / Chapter 2.5.5 --- Determination of ATPase activities --- p.43 / Chapter 2.5.6 --- Assay buffers --- p.43 / Chapter 2.6 --- Sulfhydryl group protection assay --- p.44 / Chapter 2.6.1 --- Preparation of RBC membrane --- p.44 / Chapter 2.6.2 --- Basis of assay --- p.45 / Chapter 2.6.3 --- Assay procedures --- p.45 / Chapter 2.7 --- Lipid peroxidation inhibition assay of LDL by the AAPH method --- p.46 / Chapter 2.7.1 --- Basis of assay --- p.46 / Chapter 2.7.2 --- Assay procedures --- p.46 / Chapter 2.8 --- Lipid peroxidation inhibition assay of LDL by the hemin method --- p.47 / Chapter 2.8.1 --- Basis of assay --- p.47 / Chapter 2.8.2 --- Assay procedures --- p.47 / Chapter 2.9 --- Protein assay --- p.48 / Chapter 2.10 --- Statistical analysis --- p.48 / Chapter 2.11 --- Test compounds --- p.48 / Chapter Chapter 3 --- Xanthine oxidase inhibition assay: results and discussion --- p.49 / Chapter 3.1 --- Introduction --- p.49 / Chapter 3.2 --- Results --- p.54 / Chapter 3.3 --- Discussion --- p.59 / Chapter Chapter 4 --- Lipid peroxidation inhibition in mouse liver microsomes: results and discussion --- p.64 / Chapter 4.1 --- Introduction --- p.64 / Chapter 4.2 --- Results --- p.64 / Chapter 4.3 --- Discussion --- p.69 / Chapter Chapter 5 --- Assays on protection of RBC from oxidative damage: results and discussion --- p.71 / Chapter 5.1 --- Introduction --- p.71 / Chapter 5.2 --- Results --- p.75 / Chapter 5.2.1 --- AAPH-induced hemolysis inhibition assay --- p.75 / Chapter 5.2.2 --- Lipid peroxidation inhibition assay of RBC membranes --- p.82 / Chapter 5.2.3 --- Ca2+-ATPase protection assay --- p.88 / Chapter 5.2.4 --- Na+/K+-ATPase protection assay --- p.95 / Chapter 5.2.5 --- Sulfhydryl group protection assay --- p.100 / Chapter 5.3 --- Discussion --- p.110 / Chapter 5.3.1 --- AAPH-induced hemolysis inhibition assay --- p.110 / Chapter 5.3.2 --- Lipid peroxidation inhibition assay of RBC membranes --- p.111 / Chapter 5.3.3 --- Ca2+-ATPase protection assay --- p.113 / Chapter 5.3.4 --- Na+/K+-ATPase protection assay --- p.114 / Chapter 5.3.5 --- Sulfhydryl group protection assay --- p.115 / Chapter 5.3.6 --- Chapter summary --- p.117 / Chapter Chapter 6 --- Lipid peroxidation inhibition assay of LDL: results and discussion --- p.118 / Chapter 6.1 --- Introduction --- p.118 / Chapter 6.2 --- Results --- p.118 / Chapter 6.3 --- Discussion --- p.134 / Chapter Chapter 7 --- General discussion --- p.137 / References --- p.142
7

Effects of tetrandrine on hepatocarcinoma cell lines.

January 2011 (has links)
Yu, Wai Lam. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 79-88). / Abstracts in English and Chinese. / Acknowledgements --- p.IV / Abstract --- p.V / 論文摘要 --- p.VII / Table of Contents --- p.IX / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Cancer --- p.1 / Chapter 1.2 --- Hepatocellular Carcinoma (HCC) --- p.2 / Chapter 1.2.1 --- Risk factors causing HCC --- p.3 / Chapter 1.2.2 --- Molecular mechanism of HCC --- p.7 / Chapter 1.2.3 --- Treatment of HCC --- p.8 / Chapter 1.3 --- Tetrandrine (Tet) - A Natural Compound Derived from Traditional Chinese Medicine (TCM) --- p.10 / Chapter 1.3.1 --- Traditional Chinese Medicine (TCM) --- p.10 / Chapter 1.3.2 --- Tetrandrine (Tet) --- p.12 / Chapter 1.4 --- Molecular View of Apoptosis --- p.14 / Chapter 1.4.1 --- Overview of apoptosis --- p.14 / Chapter 1.4.2 --- Caspase cascade --- p.15 / Chapter 1.4.3 --- Bcl-2 protein family --- p.18 / Chapter 1.4.4 --- The role of mitochondria in apoptosis --- p.20 / Chapter 1.5 --- Anti-cancer Agents Inducing Apoptosis Are New Targets --- p.22 / Chapter 1.6 --- Aim of Study --- p.26 / Chapter Chapter 2 --- Materials and Methods --- p.27 / Chapter 2.1 --- Cell Culture And Treatment --- p.27 / Chapter 2.1.1 --- Cell lines used --- p.27 / Chapter 2.1.2 --- Tetrandrine (Tet) --- p.28 / Chapter 2.1.3 --- Chemicals and reagents 2 --- p.83 / Chapter 2.1.4 --- Solution preparation --- p.29 / Chapter 2.1.5 --- Procedures --- p.30 / Chapter 2.2 --- Cell viability --- p.32 / Chapter 2.2.1 --- Chemicals and reagents . --- p.32 / Chapter 2.2.2 --- Solution preparation --- p.32 / Chapter 2.2.3 --- Procedures --- p.32 / Chapter 2.3 --- Apoptosis detection --- p.34 / Chapter 2.3.1 --- Chemicals and reagents --- p.34 / Chapter 2.3.2 --- Solution preparation --- p.35 / Chapter 2.3.3 --- Procedures --- p.36 / Chapter 2.4 --- Gene expression in tet-induced apoptotic cells --- p.39 / Chapter 2.4.1 --- Chemicals and reagents --- p.39 / Chapter 2.4.2 --- Solution preparation --- p.40 / Chapter 2.4.3 --- Procedures --- p.40 / Chapter 2.5 --- Protein expression in tet-induced apoptotic cells --- p.44 / Chapter 2.5.1 --- Chemicals and reagents --- p.44 / Chapter 2.5.2 --- Solution preparation --- p.45 / Chapter 2.5.3 --- Procedures --- p.48 / Chapter 2.6 --- Cell cycle analysis of tet-treated cells --- p.54 / Chapter 2.5.1 --- Chemicals and reagents --- p.54 / Chapter 2.5.2 --- Solution preparation --- p.54 / Chapter 2.5.3 --- Procedures --- p.54 / Chapter Chapter 3 --- Result --- p.56 / Chapter Chapter 4 --- Discussion --- p.70 / Chapter 4.1 --- Dose- and Time- Dependent Inhibitory Effects of Tet were found on HuH-7 And JHH-4 Cell Lines --- p.70 / Chapter 4.2 --- Tet Is More Selective Towards Liver Cancer Cells --- p.71 / Chapter 4.3 --- The Cell Death in HuH-7 Cells Induced by Tet is Mediated Through Apoptosis --- p.72 / Chapter 4.4 --- Hepatocellular Carcinoma (HCC)Tet Induces G1 Phase Cell Cycle Arrest as Part of Its Mechanism in Inducing Apoptosis in HuH-7 Cells --- p.73 / Chapter 4.5 --- Tet Could Probably Induce G1 Phase Cell Cycle Arrest in JHH-4 Cells --- p.75 / Chapter 4.6 --- "Tet-induced Apoptosis Involves the Intrinsic, Caspase-Dependent Pathway in Both the HuH-7 and JHH-4 Cell Lines" --- p.75 / Chapter 4.7 --- Proteins in Bcl-2 Family are Involved in the Inhibitory Mechanism of Tet --- p.77 / Reference --- p.79
8

Studies on Asarum hongkongense.

January 2007 (has links)
Lee, Kit Lin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 95-105). / Abstracts in English and Chinese. / Abstract --- p.i / 撮要 --- p.iii / Acknowledgements --- p.v / Table of contents --- p.vii / List of Tables --- p.x / List of Figures --- p.xi / List of Abbreviations --- p.xiii / Chapter Chapter 1: --- Literature Review --- p.1 / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.1.1 --- History of Botanical Studies in Hong Kong --- p.1 / Chapter 1.1.2 --- Plant Species Named after Hong Kong --- p.2 / Chapter 1.2 --- Botanical Background of Asarum Plants --- p.5 / Chapter 1.2.1 --- Plant Species under the Family of Aristolochiaceae --- p.5 / Chapter 1.2.2 --- Herba Asari --- p.6 / Chapter 1.2.3 --- Classification of Asarum hongkongense --- p.8 / Chapter 1.2.4 --- Growing Habitat of Asarum hongkongense --- p.8 / Chapter 1.3 --- Medicinal Properties of Asari --- p.10 / Chapter 1.4 --- Chemical Constituents of Asari --- p.10 / Chapter 1.5 --- Aristolochic acid and Health Issues --- p.12 / Chapter 1.5.1 --- Aristolochic Acid Intoxication --- p.12 / Chapter 1.5.2 --- Description of Aristolochic Acid --- p.13 / Chapter 1.5.3 --- Toxicities of Aristolochic Acid --- p.13 / Chapter 1.5.4 --- Aristolochic Acid-Containing Plants --- p.15 / Chapter 1.5.5 --- Control of Aristolochic Acid-Containing Products --- p.17 / Chapter 1.5.6 --- Control of Aristolochic Acid-Containing Products in Hong Kong --- p.18 / Chapter 1.6 --- Objectives of Study --- p.19 / Chapter Chapter 2: --- Macroscopic Features of Asarum hongkongense --- p.20 / Chapter 2.1 --- Introduction --- p.20 / Chapter 2.2 --- Plant Material --- p.20 / Chapter 2.2.1 --- Asarum hongkongense --- p.20 / Chapter 2.2.2 --- Herba Asari --- p.23 / Chapter 2.3 --- Macroscopic Characteristics of Aarum hongkongense --- p.23 / Chapter 2.3.1 --- Leaf --- p.23 / Chapter 2.3.2 --- Root and Rhizome --- p.25 / Chapter 2.3.3 --- Flower --- p.27 / Chapter 2.4 --- Macroscopic Characteristics of Herba Asari heterotropoidis (Liaoxixin) --- p.31 / Chapter 2.4.1 --- Leaf --- p.31 / Chapter 2.4.2 --- Root and Rhizome --- p.31 / Chapter 2.4.3 --- Flower --- p.34 / Chapter 2.5 --- Discussion --- p.36 / Chapter Chapter 3: --- Microscopic Features of Asarum hongkongense --- p.38 / Chapter 3.1 --- Introduction --- p.38 / Chapter 3.2 --- Plant Materials --- p.39 / Chapter 3.3 --- "Chemical,Reagents and Instrumentation" --- p.39 / Chapter 3.4 --- Methods --- p.39 / Chapter 3.5 --- Microscopic Characteristics of Asarum hongkongense --- p.40 / Chapter 3.5.1 --- Transverse Section of Leaf --- p.40 / Chapter 3.5.2 --- Surface View of Leaf --- p.40 / Chapter 3.5.3 --- Transverse Section of Root --- p.43 / Chapter 3.5.4 --- Transverse Section of Rhizome --- p.43 / Chapter 3.5.5 --- Powder --- p.47 / Chapter 3.5.5.1 --- Pollens --- p.47 / Chapter 3.5.5.2 --- Vessels --- p.47 / Chapter 3.5.5.3 --- Starch Grains --- p.47 / Chapter 3.6 --- Microscopic Characteristics of Herba Asari heterotropoidis (Liaoxixin) --- p.49 / Chapter 3.6.1 --- Transverse Section of Leaf --- p.49 / Chapter 3.6.2 --- Surface View of Leaf --- p.49 / Chapter 3.6.3 --- Transverse Section of Root --- p.53 / Chapter 3.6.4 --- Transverse Section of Rhizome --- p.53 / Chapter 3.6.5 --- Powder --- p.56 / Chapter 3.6.5.1 --- Starch Grains --- p.56 / Chapter 3.6.5.2 --- Vessels --- p.56 / Chapter 3.7 --- Discussion --- p.58 / Chapter Chapter 4: --- Molecular DNA Sequencing of Asarum hongkongense --- p.61 / Chapter 4.1 --- Introduction --- p.61 / Chapter 4.2 --- Sample Preparation --- p.64 / Chapter 4.3 --- Method --- p.64 / Chapter 4.3.1 --- Extraction of Total DNA --- p.64 / Chapter 4.3.2 --- PCR Amplification of ITS1 and ITS2 Regions of rRNA Gene --- p.65 / Chapter 4.3.3 --- Purification of PCR Products --- p.65 / Chapter 4.3.4 --- Sequencing of ITS Regions --- p.66 / Chapter 4.3.4.1 --- Cycle Sequencing Reaction --- p.66 / Chapter 4.3.4.2 --- Purification of Sequencing Extension Products --- p.67 / Chapter 4.3.4.3 --- Electrophoresis by Genetic Analyzer --- p.67 / Chapter 4.3.4.4 --- Sequence Analysis and Alignment --- p.67 / Chapter 4.4 --- Results and Discussion --- p.68 / Chapter 4.4.1 --- Extraction of Total DNA --- p.68 / Chapter 4.4.2 --- PCR Amplification of ITS1 and ITS2 Regions of rRNA Gene --- p.68 / Chapter 4.4.3 --- Sequence Analyses --- p.68 / Chapter Chapter 5: --- Determination of Aristolochic Acid of Asarum hongkongense --- p.80 / Chapter 5.1 --- Introduction --- p.80 / Chapter 5.2 --- Sample Preparation --- p.81 / Chapter 5.3 --- Standard Preparation --- p.81 / Chapter 5.4 --- Experimental --- p.83 / Chapter 5.4.1 --- Chemical and Reagents --- p.83 / Chapter 5.4.2 --- Methods --- p.83 / Chapter 5.4.2.1 --- High-Performance Liquid Chromatography --- p.83 / Chapter 5.4.2.2 --- Mass Spectrometry --- p.85 / Chapter 5.4.3 --- Other Instrumentation --- p.85 / Chapter 5.5 --- Method Validation --- p.85 / Chapter 5.5.1 --- Calibration --- p.85 / Chapter 5.5.2 --- Precision --- p.87 / Chapter 5.5.3 --- Recovery Test --- p.88 / Chapter 5.5.4 --- Limit of Detection --- p.89 / Chapter 5.6 --- Results and Discussion --- p.90 / Chapter Chapter 6: --- Conclusion --- p.92 / References --- p.94
9

川芎活性成分提取工藝及品質評價方法研究 / Study on the technology of extraction of the bio-active constituents and the method of quality control of Rhizoma chuanxiong

汪潛 January 2004 (has links)
University of Macau / Institute of Chinese Medical Sciences

Page generated in 0.0851 seconds