Spelling suggestions: "subject:"matematerials design anda construction"" "subject:"matematerials design ando construction""
1 |
Synthesis and characterization of nanostructured metallic zinc and zinc oxideMuley, Amol. January 2007 (has links)
published_or_final_version / abstract / Mechanical Engineering / Master / Master of Philosophy
|
2 |
New biodegradable polyhydroxyacids and polyurethane scaffolds for tissue engineeringTsui, Yuen-kee., 崔婉琪. January 2005 (has links)
published_or_final_version / abstract / toc / Orthopaedics and Traumatology / Master / Master of Philosophy
|
3 |
Development of stress gradient enhanced piezoelectric composite unimorph actuatorsHopkinson, David P. 08 1900 (has links)
No description available.
|
4 |
Design, synthesis and characterization of A-D-A structural porphyrin small molecules for bulk heterojunction organic solar cell applicationsChen, Song 10 November 2017 (has links)
Bulk heterojunction organic solar cells (BHJ OSCs) have been recognized as one of the most promising next generation green technology alternatives to inorganic solar cells because of the low-cost, lightweight, flexibility. Specifically, the use of small molecules instead of polymers as donors in BHJ OSC have been developed very fast recently because small molecules can be facilely synthesized and easily purified, and have a determined molecular structure without batch-to-batch variations. To date, those among the most efficient small molecules were constructed as acceptor-donor-acceptor (A-D-A) structural configuration from electron-rich units such as benzodithiophene (BDT), dithienosilole (DTS), oligothiophene units, and electron-deficient units such as benzothiadiazole (BT), diketopyrrolopyrrole (DPP), isoindigo (IID) and perylenediimide (PDI). Surprisingly, porphyrins were rarely studied either in polymers or π-conjugated small molecules as donor materials, though they have unique chemistry together with excellent photochemical and electrochemical properties, such as facile functionalization of the periphery and the variation of the central atom (metal ions), strong UV-visible absorption, ultrafast photoinduced charge separation in porphyrin-fullerene systems. In this research work, we design, synthesize and characterize new porphyrin-based small molecules with acceptor-donor-acceptor (A-D-A) configuration for bulk heterojunction organic solar cells, and investigate their structure-property relationships, specifically the effect of peripheral and backbone alkyl side-chains, π-conjugated linkers as well as electron-deficient ending units on the charge mobility, film morphology and solar cell performances. In Chapter 1, a general review on the historic and recent development of BHJ OSCs was given first, including the major components and working principle of OSC, the versatile organic semiconductors and their performances in OSCs. In chapter 2, six A-D-A structural porphyrin small molecules were designed and synthesized, in which different peripheral alkyl substitutions are attached to the meso-position of porphyrin core (CS-I, CS-II, CS-III, CS-4, CS-5 and CS-6), and 3-ethylrhodanine is used as terminal group. Their UV-visible absorption in solid, energy level, blend film morphology, charge mobility and cell performance are dependent on the different peripheral substitutions. The active layer consists of these six small molecules as donor materials and PC71BM as the acceptor material with an optimized film thickness. Although all six molecules show similar optical spectrum in solutions, the introduction of linear alkyl side chains can promote thin-film nanostructural order, especially shown to shorten π-π stacking distances between backbones and increase the correlation lengths of both π-π stacking and lamellar spacing, leading to higher efficiency in this serial. Among them, the highest power conversion efficiency of 9.09% has been achieved by CS-4 based devices. In chapter 3, another two new A-D-A porphyrin small molecules (PTTR and PTTCNR) have been developed, which are similar in structure to CS-I, II and III, except that the linker is phenylethynyl in CS-I, II and III, whereas it is terthiophenylethynyl in PTTR and PTTCNR. The highest power conversion efficiency of 8.21% is achieved by PTTCNR, corresponding to a JSC of 14.30 mA cm−2, VOC of 0.82 V, and FF of 70.01%. The excellent device performances can be ascribed to the conjugated structure of porphyrin with 3,3''-dihexyl-terthiophene and the aliphatic 2-octylundecyl peripheral substitutions, which not only effectively increase the solar flux coverage between the conventional Soret and Q bands of porphyrin unit, but also optimize molecular packing through polymorphism associated with side-chain and the π-conjugated backbones, and form the blend films with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) characteristics of bi-continuous, interpenetrating networks required for efficient charge separation and transportation.;In chapter 4, we designed and synthesized a new dimeric porphyrin donor molecule (CS-DP) containing A-π2-D-π1-D-π2-A architecture by coupling of two zinc porphyrin cores through ethynyl linker. Interestingly, it can harvests the photons up to deep near-infrared (NIR) region in the absorption spectrum. From the past decades, it has been found that developing donor molecules with the absorption spectral in NIR region is a challenging key factor to get the high performance BHJ OSCs. Solar cell devices employing CS-DP as a donor exhibit a highest power conversion efficiency of 8.23%, corresponding to JSC = 15.14 mA cm-2, VOC = 0.781 mV and FF = 69.8% under AM 1.5G solar radiation. The high efficiency of this molecule is attributed to a panchromatic IPCE action spectrum from 300 nm to 1000 nm. Also, this performance is best for the reported deep NIR organic solar cells based on single small molecule and PC71BM system so far. We envision that this new small bandgap dimeric porphyrin is very promising to use in ternary and multi-junction applications as well as NIR photodetectors. In chapter 5, a series of new A-D-A structural porphyrin small molecules (CS-10, CS-11 and CS-12) have been prepared, that contain the same meso-thienyl-thioalkyl substituted porphyrin core and 3-ethylrhodanine ending unit, but varies with different numbers of phenylethynyl linker. Using them as donors for solution-processed organic solar cells, the device based on CS-10 featuring single phenyl ethynyl π-linker exhibits high power conversion efficiency (PCE) of 7.0%. The results indicate that meso-thienyl-thioalkyl substitution and controlled π-linker length is beneficial to tune the optoelectronic properties, film morphology and consequently performance of porphyrin-based BHJ OSCs. In chapter 6, two symmetrical tetra-meso-substituted porphyrin molecules (ZnP and CuP) have been prepared in gram-scale through the direct condensation of pyrrole and 4-[bis(4-methoxyphenyl)amino]benzaldehyde. Its Zn(II) and Cu(II) complexes exhibit excellent thermal and electrochemical stability, specifically, high hole mobility and very favorable energetics for hole extraction that render them attractive for implementation as new hole transporting materials in organometallic halide perovskite solar cells (PSCs). As expected, the use of ZnP as HTM in PSCs affords a competitive PCE of 17.78%, which is comparable to the most powerful HTM of Spiro-OMeTAD (18.59%) under the same working conditions. Meanwhile, the metal centers affect somewhat the photovoltaic performances that CuP as HTM produces a relative lower PCE of 15.36%. Notably, the perovskite solar cells employing ZnP show longer stability than that of Spiro-OMeTAD. Moreover, the two porphyrin-based HTMs can be prepared from relatively cheap raw materials with a facile synthetic route. The results demonstrate that ZnP and CuP can be a new class of HTMs for efficient and stable perovskite solar cells. To the best of our knowledge, this is the highest performance for porphyrin-based perovskite solar cells with PCE > 17%. The dissertation was completed with conclusions and outlooks in chapter 7.
|
5 |
Characterization of Actuation and Fatigue Properties of Piezoelectric Composite ActuatorsWebber, Kyle Grant 20 May 2005 (has links)
Epoxy composite laminated piezoelectric stress-enhanced actuators (ECLIPSE) have been developed for potential applications by the United States Air Force and others. This class of actuators offers several advantages over other unimorph actuators such as lighter weight, design flexibility, and short production time. Anisotropic differential thermal expansion is utilized in the design of the actuators to achieve large out-of-plane curvature and place the brittle piezoelectric ceramic in residual compression. The numerous composite material choices and configurations can be used to control characteristics of the actuator such as radius of curvature and force output.
ECLIPSE actuators were characterized during this study. They were made from layers of Kevlar 49/epoxy composite and a lead zirconate titanate ceramic (PZT) plate. All ECLIPSE actuators tested were built with a PZT plate with the same dimensions and material, but had different layup configurations. By changing the stacking order of the composite and PZT material, characteristics of the actuator were altered. The performance of each ECLIPSE actuator was compared. The maximum achievable displacement of each actuator was measured by cyclically applying an electric field at low frequency between zero and the maximum electric field allowable for the piezoelectric material. The frequency was also increased to a resonance condition to characterize the fatigue behavior of these actuators. In addition, the force output of various actuators was measured with a four-point bending apparatus. The experimental data was compared to a classical lamination theory model and an extended classical lamination theory model. These models were used to predict actuator behavior as well as to calculate the stress and strain distribution through the thickness of the actuator.
|
6 |
Supramolecular networks as templates for hierarchical assembly on the sub-5 nm scaleKaramzadeh, Baharan January 2015 (has links)
In this study, the templating role of bimolecular triple hydrogen bonded honeycomb network consisting perylene-3,4,9,10-tetracarboxydi-imide and melamine is investigated, using scanning tunneling microscopy. Although the stability of the network upon modification is a major obstacle toward higher complexity, three different approaches in this work highlight formation of successful architectures in a sequential way. 1. Insertion of pore modifier star shaped molecules based on tri(phenylene ethynylene)benzene core in the pores to construct a new template. 2. Insertion of iodinated molecules in the pores to study the network as a nanoreactor. 3. Electrochemical deposition of metals in the pores. Self-assembly monolayer of four different molecules based on tri(phenylene ethynylene)benzene core on uniform gold surface revealed different structures. The degree of the order within the structures depends highly on the symmetry of the molecules, and hence asymmetric molecule formed disordered structure. Upon insertion into the pores of the network, one of molecules did not match the pores size, while others fitted and illustrated rotation depending on the strength of their interaction with the network components and the substrate. The rotation is significantly reduced by modifying the molecules. These new architectures are used as templets hosting C₆₀ molecules which resulted in isolated single C₆₀ molecules. Self-assembly of iodinated molecule under different conditions on uniform gold surface leads to formation of different structures including monomers and dimers. Upon thermal treatment on the uniform surface oligomers are formed, whereas for the molecules confined in the pores of the network, the covalent bond formation was limited to dimerisation. Electrochemical copper deposition into the pores of the network under acidic condition (pH = 1 - 2) is not possible because of the stability of the network. However, by increasing pH of the electrolyte (pH = 5 – 7), a bilayer of Cu and anion is formed in the pores of the network, confirmed by scanning tunneling microscopy and X-ray photoelectron spectroscopy.
|
7 |
A process simulation model for the manufacture of composite laminates from fiber-reinforced, polyimide matrix prepreg materialsLee, Chun-Sho 10 November 2005 (has links)
A numerical simulation model has been developed which describes the manufacture of composite laminates from fiber-reinforced polyimide (PMR-15) matrix prepreg materials. The simulation model is developed in two parts. The first part is the volatile formation model which simulates the production of volatiles and their transport through the composite microstructure during the imidization reaction. The volatile formation model can be used to predict the vapor pressure profile and volatile mass flux. The second part of the simulation model, the consolidation model, can be used to determine the degree of crosslinking, resin melt viscosity, temperature, and the resin pressure inside the composite during the consolidation process. Also, the model is used to predict the total resin flow, thickness change, and total process time. The simulation model was solved by a finite element analysis.
Experiments were performed to obtain data for verification of the model. Composite laminates were fabricated from ICI Fiberite HMF2474/66C carbon fabric, PMR-15 prep reg and cured with different cure cycles. The results predicted by the model correlate well with experimental data for the weight loss, thickness, and fiber volume fraction changes of the composite. An optimum processing cycle for the fabrication of PMR-15 polyimide composites was developed by combining the model generated optimal imidization and consolidation cure cycles. The optimal cure cycle was used to manufacture PMR-15 composite laminates and the mechanical and physical properties of the laminates were measured. Results showed that fabrication of PMR-15 composite laminates with the optimal cure cycle results in improved mechanical properties and a significantly reduced the processing time compared with the manufacturer's suggested cure cycle. / Ph. D.
|
8 |
Mechanical and structural properties of interlocking assembliesKhor, Han Chuan January 2008 (has links)
A novel way to ensure stability of mortarless structures topological interlocking is examined. In this type of interlocking the overall shape and arrangement of the building blocks are chosen in such a way that the movement of each block is prevented by its neighbours. (The methodological roots of topological interlocking can be found in two ancient structures: the arch and the dry stone wall.) The topological interlocking proper is achieved by two types of blocks: simple convex forms such as the Platonic solids (tetrahedron, cube, octahedron, dodecahedron and icosahedron) that allow plate-like assemblies and specially engineered shapes of the block surfaces that also allow assembling corners. An important example of the latter so-called Osteomorphic block is the main object of this research with some insight being provided by numerical modelling of plates assembled from tetrahedra and cubes in the interlocking position. The main structural feature of the interlocking assemblies is the need of the peripheral constraint (for the Osteomorphic blocks this requirement can be relaxed to uni-directional constraint) to keep their integrity. We studied the least visible constraint structure internal pre-stressed cables which run through pre-fabricated holes in Osteomorphic blocks. It is shown that the pre-stressed steel cables can provide the necessary constraint force without creating appreciable residual stresses in the cables, however the points of connection of the cables are the weakest points and need special treatment. The main mechanical feature of the interlocking structures is the absence of block bonding. As a result, the blocks have a certain freedom of translational and rotational movement (within the kinematic constraints of the assembly) and their contacts have reduced shear stresses which hampers fracture propagation from one block to another. These features pre-determine the specific ways the interlocking assemblies behave under mechanical and dynamic impacts. These were studied in this project and the following results are reported. As the blocks in the interlocking structure are not connected, the main issue is the bearing capacity. The study of the least favourable, central point loading in the direction normal to the structure shows elevated large-scale fracture toughness (resistance to fracture propagation). However when the central force imposes considerable bending the generated tensile membrane stresses assist fracturing of the loaded block. Prevention of bending considerably enhances the strength therefore the most efficient application of the interlocking structures would be in protective coatings and covers. Furthermore, proper selection of the material properties and the interface friction can increase the system overall strength and bearing capacity. The results of the computer simulations suggest that both Youngs modulus and the friction coefficient are the key parameters whose increase improves the bearing capacity of topologically interlocking assemblies.
|
9 |
A Robust Topological Preliminary Design Exploration Method with Materials Design ApplicationsSeepersad, Carolyn Conner 19 November 2004 (has links)
A paradigm shift is underway in which the classical materials selection approach in engineering design is being replaced by the design of material structure and processing paths on a hierarchy of length scales for specific multifunctional performance requirements. In this dissertation, the focus is on designing mesoscopic material and product topology?? geometric arrangement of solid phases and voids on length scales larger than microstructures but smaller than the characteristic dimensions of an overall product. Increasingly, manufacturing, rapid prototyping, and materials processing techniques facilitate tailoring topology with high levels of detail. Fully leveraging these capabilities requires not only computational models but also a systematic, efficient design method for exploring, refining, and evaluating product and material topology and other design parameters for targeted multifunctional performance that is robust with respect to potential manufacturing, design, and operating variations.
In this dissertation, the Robust Topological Preliminary Design Exploration Method is presented for designing complex multi-scale products and materials by topologically and parametrically tailoring them for multifunctional performance that is superior to that of standard designs and less sensitive to variations. A comprehensive robust design method is established for topology design applications. It includes computational techniques, guidelines, and a multiobjective decision formulation for evaluating and minimizing the impact of topological and parametric variation on the performance of a preliminary topological design. A method is also established for multifunctional topology design, including thermal topology design techniques and multi-stage, distributed design methods for designing preliminary topologies with built-in flexibility for subsequent modification for enhanced performance in secondary functional domains.
Key aspects of the approach are demonstrated by designing linear cellular alloys??ered metallic cellular materials with extended prismatic cells?? three applications. Heat exchangers are designed with increased heat dissipation and structural load bearing capabilities relative to conventional heat sinks for microprocessor applications. Cellular materials are designed with structural properties that are robust to dimensional and topological imperfections such as missing cell walls. Finally, combustor liners are designed to increase operating temperatures and efficiencies and reduce harmful emissions for next-generation turbine engines via active cooling and load bearing within topologically and parametrically customized cellular materials.
|
10 |
A Combined Piezoelectric Composite Actuator and Its Application to Wing/Blade TipsHa, Kwangtae 28 November 2005 (has links)
A novel combined piezoelectric-composite actuator configuration is proposed and analytically modeled in this work. The actuator is a low complexity, active compliant mechanism obtained by coupling a modified star cross sectional configuration composite beam with a helicoidal bimorph piezoelectric actuator coiled around it. This novel actuator is a good candidate as a hinge tension-torsion bar actuator for a helicopter rotor blade flap or blade tip and mirror rotational positioning. In the wing tip case, the tip deflection angle is different only according to the aerodynamic moment depending on the hinge position of the actuator along the chord and applied voltage because there is no centrifugal force. For an active blade tip subject to incompressible flow and 2D quasi steady airloads, its twist angle is related not only to aerodynamic moment and applied voltage but also to coupling terms, such as the trapeze effect and the tennis racquet effect. Results show the benefit of hinge position aft of the aerodynamic center, such that the blade tip response is amplified by airloads. Contrary to this effect, results also show that the centrifugal effects and inertial effect cause an amplitude reduction in the response. Summation of these effects determines the overall blade tip response. The results for a certain hinge position of Xh=1.5% chord aft of the quarter chord point proves that the tip deflection target design range[-2,+2] can be achieved for all pitch angle configurations chosen.
|
Page generated in 0.138 seconds