Spelling suggestions: "subject:"matematerials nanotechnology."" "subject:"matematerials nanotechnnology.""
21 |
Synthesis and characterization of nanostructured electrode materials for rechargeable lithium ion batteriesPark, Min Sik. January 2008 (has links)
Thesis (Ph.D.)--University of Wollongong, 2008. / Typescript. Includes bibliographical references: page 205-222.
|
22 |
Computational modeling of thermal transport in low-dimensional materialsMedrano Sandonas, Leonardo Rafael 04 December 2018 (has links)
Over the past two decades, controlling thermal transport properties at the nanoscale has become more and more relevant. This is mostly motivated by the need of developing novel energy-harvesting techniques based on thermoelectricity and the necessity to control the heat dissipation in semiconductor devices. In this field, two major research lines can be identified: On one side 'phononics', which aims at developing devices such as thermal diodes, thermal transistors, and thermal logic gates, among others, and on the other side, phonon engineering aiming at controlling heat transport by producing or structurally modifying heterostructures made of novel nanomaterials (e.g., two-dimensional (2D) materials, nanotubes, organic systems). In order to gain insight into the factors controlling nanoscale heat flow and to be able to design highly-efficient thermal devices, the development of new computational approaches is crucial.
The primary goal of the present thesis is the implementation of new methodologies addressing classical and quantum thermal transport at the nanoscale. We will focus on three major issues: (i) We will study thermal rectification effect in nanodevices made of novel 2D materials by means of nonequilibrium molecular dynamics simulations. The influence of structural asymmetry and substrate deposition on the thermal rectification will be investigated. (ii) To address quantum ballistic thermal transport in nanoscale systems, we will implement a nonequilibrium Green's functions (NEGF) treatment of transport combined with a density-functional based approach. Here, we will explore the dependence of the thermal transport properties of 2D materials and nanotubes on different intrinsic (structural anisotropy and grain boundaries) and external (molecular functionalization, strain engineering, and doping) factors. Finally, (iii) a time-dependent NEGF formalism will be developed and implemented to probe the transient and steady thermal transport in molecular junctions.
In short, our results show that the mechanisms governing the thermal rectification effect in the 2D thermal rectifiers proposed in this work are shape asymmetries, interface material (planar stacking order), and changes in the degree of spatial localization of high-frequency modes (under nonequilibrium heat transport conditions). The rectification effect can be also controlled by substrate engineering. Moreover, we found that quantum ballistic thermal transport in 2D puckered materials displays an anisotropic behavior. The presence of structural disorder in the form of grain boundaries in graphene reduces overall its thermal transport efficiency. Dynamical disorder induced by coupling to a thermostat has however a weaker effect, suggesting that structural defects are playing a major role. External factors have a noticeable influence on the heat transport in new 2D materials and BNC heteronanotubes. On the other hand, we have also been able to characterize, from a quantum point of view, the phonon dynamics in carbon-based molecular junctions. We expect that the results obtained within this thesis will yield new insights into the thermal management of low-dimensional materials, and thus open new routes to the design of thermoelectric and phononic devices. / In den letzten zwei Jahrzehnten hat die Kontrolle der thermischen Transporteigenschaften im Nanobereich immer mehr an Bedeutung gewonnen. Dies ist vor allem auf die Notwendigkeit zurückzuführen, neue Energiegewinnungstechniken zu entwickeln, die auf Thermoelektrizität basieren, sowie auf die Problematik, die Wärmeabfuhr in Halbleiterbauelementen kontrollieren zu müssen. In diesem Bereich lassen sich zwei große Forschungslinien identifizieren: Auf der einen Seite 'Phononik', die unter anderem auf die Entwicklung von Bauelementen wie thermischen Dioden, Transistoren und Logikgattern abzielt, und auf der anderen Seite die Phononentechnik, die den Wärmetransport durch Herstellung oder strukturelle Modifikation von Heterostrukturen aus neuartigen Nanomaterialien (z.B. zweidimensionalen (2D) Materialien, Nanoröhren, organischen Systemen) steuert. Um einen Einblick in die Faktoren zu erhalten, die den Wärmefluss im Nanobereich steuern, und um hocheffiziente thermische Bauteile entwickeln zu können, ist die Entwicklung neuer Berechnungsansätze entscheidend.
Das Hauptziel der vorliegenden Arbeit ist die Implementierung neuer Methoden, die sich mit dem klassischen und dem quantenthermischen Transport auf der Nanoskala befassen. Wir werden uns auf drei Hauptthemen konzentrieren: (i) Wir werden den thermischen Rektifikationseffekt in Nanobauteilen aus neuartigen 2D-Materialien mit Hilfe von Nichtgleichgewichts-Molekulardynamiksimulationen studieren. Der Einfluss von Strukturasymmetrie und Substratablagerung auf die thermische Rektifikation wird untersucht. (ii) Um den quantenballistischen Wärmetransport in nanoskaligen Systemen anzugehen, werden wir eine NEGF-Behandlung (Nichtgleichgewichts-Greensche Funktionen) des Transports in Kombination mit einem dichtefunktionalen Ansatz implementieren. Hier wird die Abhängigkeit der thermischen Transporteigenschaften von 2D-Materialien und Nanoröhrchen von verschiedenen intrinsischen (strukturelle Anisotropie und Korngrenzen) und externen (molekulare Funktionalisierung, Stammtechnik und Dotierung) Faktoren untersucht. Schließlich wird (iii) ein zeitabhängiger NEGF-Formalismus entwickelt und implementiert, um den transienten und stetigen Wärmetransport in molekularen Verbindungen zu untersuchen.
Unsere Ergebnisse zeigen, dass die wesentlichen Mechanismen für die thermische Gleichrichtung in 2D thermischen Gleichrichtern durch Asymmetrien der Bauteilform, das Interface-Material (planare Stapelung Reihenfolge), und änderungen im Grad der räumlichen Lokalisierung von Hochfrequenz-Modi (unter Nicht-Gleichgewicht Wärmetransport-Bedingungen) gegeben sind. Der Gleichrichteffekt kann auch durch die Wahl des Substrats gesteuert werden. Darüber hinaus haben wir festgestellt, dass der quantenballistische Wärmetransport in 2D-Puckered-Materialien ein anisotropes Verhalten zeigt. Das Vorhandensein von strukturellen Störungen in Form von Korngrenzen in Graphen reduziert insgesamt die Effizienz des Wärmetransports. Dynamische Störungen, die durch die Ankopplung an einen Thermostaten hervorgerufen werden, haben jedoch eine schwächere Wirkung, was darauf hindeutet, dass strukturelle Defekte eine große Rolle spielen. Externe Faktoren haben einen nachweislichen Einfluss auf den Wärmetransport in neuen 2D-Materialien und BNC-Heteronanotubes. Weiterhin konnten wir auch die Phononendynamik in kohlenstoffbasierten molekularen Verbindungen quantitativ charakterisieren. Wir erwarten, dass die Ergebnisse dieser Arbeit neue Erkenntnisse über das Wärmemanagement von niedrigdimensionalen Materialien liefern und damit neue Wege für das Design von thermoelektrischen und phononischen Bauelementen eröffnen.
|
23 |
Metal-Organic Frameworks for Carbon Dioxide Capture : Using Sustainable Synthesis RoutesDeole, Dhruva January 2022 (has links)
Globally the combustion of fossil fuels has increased to a greater extent. Carbon dioxide (CO2) a major greenhouse gas isa by-product of such combustion practices. Increase in the quantity of CO2 emissions has resulted in serious environmental issues including global warming, ocean acidification, extreme weather, and much more leaving a direct impact on the human society. To reduce these emissions, we need a more efficient carbon dioxide capturing technology. Using advances in materials science and engineering we can develop newer technologies for the capture of carbon dioxide gas. Metal-organic frameworks (MOFs) constitute a class of three-dimensional porous materials. They have shown applicability in various fields including carbon dioxide capture. A vast variety of MOFs can be synthesized by selecting proper metal salts and organic-linkers to build up the MOF structure. This thesis focuses on the synthesis of MOFs through a sustainable process or green synthesis route. Most of the MOFs in this study have been synthesized at ambient temperature and pressure conditions with deionized water as the primary solvent. A total of eight MOFs were synthesized in this study using two organic-linkers namely, 1,2,4,5-tetrakis(4-carboxyphenyl)-benzene (H4TCPB) and 2,5-dihydroxy-1,4-benzoquinone (H2DHBQ). The metal-salts used were based on hafnium, zirconium, cerium, magnesium, iron and manganese. A number of qualitative and quantitative tests were carried out onthe MOF samples to ensure their quality of produce and performance. The primary focus was to test the materials for their capacity to uptake carbon dioxide (CO2) in a mixture of flue gases. The highest CO2 uptake capacity was recorded to be 3.02 mmol/g (at 293 K and 1 bar) by the H2DHBQ-magnesium based MOF. All the materials showed good results andwere proven to be reusable. All the synthesized MOFs were crystalline in nature, showed a single-phase microstructure and high surface area values. A supplementary study was conducted wherein the powdered MOFs were 3D printed by the Direct Ink Writing (DIW) technique using an alginate binder. The study was satisfactory because the MOFs after being 3D printed, managed to preserve their inherent properties and characteristics. The results were in par with that of their pristine MOF counterparts. / Den globala förbränningen av fossila bränslen har i allt större utsträckning ökat. Koldioxid (CO2) är en avde viktigast växthusgaserna och erhålls som biprodukt från många förbränningsmetoder. Den höga haltenkoldioxid i atmosfären har resulterat i allvarliga miljömässiga konsekvenser inklusive den globaluppvärmningen, försurning av haven, extremt väder och mycket mer som har en direkt påverkan på detmänskliga samhället. För att minska dessa utsläpp behöver vi en mer effektiv koldioxidinfångningsteknologi. Med hjälp av framsteg inom materialvetenskapen kan vi utveckla nyare tekniker för att fångakoldioxid. Metallorganiska ramverk (MOFs) utgör en klass av tredimensionella porösa material. De har visat siganvändbara inom olika områden inklusive infångning av koldioxid. Många variation av MOF material kansyntetiseras från olika metallsalter och organiska ligander för att bygga upp MOF-strukturen. Dettaexamensarbete fokuserar på syntesen av metallorganiska ramverk via en grön syntesväg och en hållbarprocess. En stor del av MOF materialen som erhölls syntetiserades i rumstemperatur och vid normala tryckmed avjoniserat vatten som det primära lösningsmedlet. Åtta MOFs material syntetiserades i detta projekt med två olika organiska ligander, nämligen, 1,2,4,5-tetrakis(4-karboxifenyl)bensen (H4TCPB) och 2,5-dihydroxy-1,4-bensokinon (H2DHBQ). Metallsalternasom användes i synteserna baserades på hafnium(IV), zirkonium(IV), cerium(IV), magnesium(II), järn(II)och mangan(II). Ett antal kvalitativa och kvantitativa tester genomfördes på MOF:arna för att säkerställaderas kvalitet och prestanda. Det primära fokuset var att testa de olika materialen för deras förmåga att taupp koldioxid (CO2) i en blandning av olika gaser (så som kväve, N2). Den DHBQ-magnesium-baseradeMOF:en uppvisade den högsta CO2-upptagningsförmågan som var 3,02 mmol/g. Alla MOF material visadegoda resultat och visade sig även vara återanvändbara. Alla syntetiserade MOF:ar hade god kristallinitet,uppvisade en singulär fas samt hög ytarea. En kompletterande studie genomfördes där de syntetiserade MOFs materialen (i dess pulverform) 3Dprintades med hjälp av natriumalginat som bindemedel. Studien var lyckad eftersom MOF:arna erhöll entillämplig form/maktrostruktur samtidigt som materialen bevarade sina inneboende egenskaper efter 3Dprintningen.
|
Page generated in 0.0623 seconds