Spelling suggestions: "subject:"matematerials cience"" "subject:"matematerials cscience""
301 |
Binder-Free Composite Electrodes for Energy Storage Devices Using Networks of Carbon Nanotubes as a Multifunctional MatrixUnknown Date (has links)
The improvement of electrical energy storage (EES) devices such as batteries and electrochemical capacitors (ECs) is crucial to the widespread adoption of electric drive vehicles and the increased mobility of portable electronics. This research takes a unique approach to the improvement of EES devices through the investigation of a novel nanocomposite system to improve the performance of particle based electrodes. The majority of commercially available batteries and ECs have electrodes fabricated from a powder of fine particles (typically with particle sizes on the order of several µms). There is a severe lack of options for transforming these powders into usable electrodes. The traditional electrode fabrication method is to mix the active material powder with a polymer binder to form a sheet or film, which can then be implemented into the device. However, reliance on and incorporation of the polymer binder introduces several disadvantages and performance limitations. In this research, porous networks of carbon nanotubes (CNTs) are investigated to replace the polymer binder in the fabrication of particle based electrodes for electrochemical devices. The multifunctional CNT networks provide the supporting structure and electron conduction pathways to create freestanding and flexible composite electrodes with high electrical conductivities (50 - 100+ S/cm). Two case studies were carried out to explore the properties and performance of the new electrode structure: 1) Activated carbon (aC) particle based electrodes for electrochemical capacitors and 2) Silicon (Si) particle based electrodes for lithium-ion batteries. Samples were fabricated and characterized with an emphasis on obtaining processing-structure-property relationships to guide further development of these unique nanocomposite materials. The aC-CNT electrodes showed specific capacitances of ~50 F/g (in 6M KOH) with less than 10% capacitance loss after 30,000 cycles; demonstrating the ability of the CNT networks to maintain structural integrity during operational conditions. Si-CNT electrodes had high coulombic efficiencies (> 90%) and initial reversible capacities of over 2000 mAh/g. Additionally, fundamental issues are addressed such as possible electrode failure mechanisms and the limits of particle weight fractions that are achievable. Knowledge of the maximum weight fraction of particles obtainable within the CNT networks is important to determine the feasibility of the electrodes for commercial use. A volume-fraction-limited phenomenon is proposed for the mechanism of the particle loading limit and discussed with supporting evidence. / A Thesis submitted to the The Graduate School in partial fulfillment of the requirements for the degree of Master of
Science. / Fall Semester, 2010. / November 12, 2010. / carbon nanotube, binder-free, nanocomposite, electrode, battery / Includes bibliographical references. / Zhiyong Liang, Professor Directing Thesis; Tao Liu, Committee Member; Hsu-Pin Wang, Committee Member; Jianping Zheng, Committee Member.
|
302 |
ISOTHERMAL DEFORMATION AND MODELING OF Ti-6Al-4VVempati, Vamsi Krishna 10 July 2012 (has links)
No description available.
|
303 |
Solidification of Hot-Dip Galvanized CoatingsKaboli, Shirin January 2010 (has links)
<p>Continuous hot-dip galvanizing is a common industrial process in which a steel sheet is immersed in a molten zinc alloy bath. After solidification, a thin zinc-rich layer is formed on the steel surface which protects the substrate in corrosive environments. Small amounts of antimony are sometimes added to the galvanizing bath to reduce zinc viscosity and ease the gas jet wiping operation. One of the side effects of antimony addition to the zinc alloy bath is the formation of very large zinc grains. One of the problems associated with coatings containing large zinc grains are relatively poor paint adhesion and detrimental mechanical properties. In this study, a galvanizing simulator was used to investigate the influence of important process variables such as bath composition, steel surface roughness and cooling conditions on the solidification of zinc coatings. The coating surface and cross-sectional microstructures were characterized via optical microscopy and Scanning Electron Microscopy (SEM). In addition, the zinc grain orientation distribution was investigated using Electron Backscattered Diffraction (EBSD). Furthermore, Scanning Auger Microscopy (SAM) was carried out on the coating surface to study the distribution of alloying elements and bath impurities in intermetallic phases. The results showed that the presence of small amounts of antimony in the zinc alloy bath enhanced the grain growth in preferred crystallographic orientations on both substrates. It was also found that the substrate surface roughness had a strong influence on the coating crystallographic texture such that zinc grains had a strong basal preferred orientation on smooth substrates while exhibiting prismatic or pyramidal orientations onrough substrates. Finally, zinc crystals were smaller for the slow-cooled coatings while zinc grains had almost the same diameter for the intermediate and fast-cooled coatings on both the smooth and rough substrates. Factors affecting the solidified microstructure, crystallographic orientation of zinc grains and phase assemblage will be discussed.</p> / Master of Applied Science (MASc)
|
304 |
ADVANCED MATERIALS AND FABRICATION METHODS FOR ORGANIC SOLAR CELLSWu, Kangmin 11 1900 (has links)
<p>New electrochemical deposition methods have been developed for the fabrication of advanced composite coatings for organic solar cells and hybrid organic solar cells. The methods are based on electrodeposition of conjugated polymers and composites. In this work, poly[3-(3-N,N-diethylaminopropoxy)thiophene] (PDAOT) and poly(9,9-bis(diethylaminopropyl)fluorine- co-phenylene) (PDAFP) were used as electron donors. Single walled carbon nanotubes (SWNTs), ZnO and Ti0<sub>2</sub> were used as electron acceptors. Also co-deposition of PDAOT and PDAFP has been developed in order to broaden the absorption range.</p> <p>An electrophoretic deposition (EPD) method has been developed for the deposition of nanostructured ZnO and Ti0<sub>2</sub> films. The stabilization and charging of the nanoparticles in suspensions was achieved using organic molecules, such as dopamine and alizarin yellow (AY) dye, which were adsorbed on the oxide nanoparticles. The adsorption mechanism is based on the complexation of metal ions at the surfaces of oxide nanoparticles. Cationic dopamine additive was used for the formation of deposits by cathodic EPD. The adsorption of anionic AY on the oxide nanoparticles resulted in charge reversal and enabled the formation of anodic deposits. The method enabled the co-deposition of ZnO and Ti0<sub>2</sub> and the formation of composite films.</p> <p>Electrophoretic deposition (EPD) method has been developed for the fabrication of Ti0<sub>2</sub> films. Benzoic acid and phenolic molecules, such as 4-hydroxybenzoic acid, 3,5-dihydroxybenzoic acid, gallic acid, salicylic acid and salicylic acid sodium salt were investigated as charging additives for the EPD of Ti0<sub>2</sub> particles. The deposition yield has been studied as a function of the additive concentration and deposition time for cathodic deposits obtained from the suspensions, containing benzoic acid, 4-hydroxybenzoic acid, 3,5-dihydroxybenzoic acid and anodic deposits prepared from the suspensions, containing gallic acid and salicylic acid sodium salt. The results obtained for the phenolic molecules with different number of OH groups were analyzed and compared with corresponding experimental data for benzoic acid without OH groups. The adjacent OH groups, as well as adjacent OH and COOH groups bonded to the aromatic ring of the phenolic molecules were beneficial for adsorption of the molecules on oxide particles. The adsorption mechanisms involved the interaction of COOH groups and OH groups of the organic molecules with metal ions on the particle surfaces and complexation.</p> <p>The functional dispersants investigated in this work can be utilized for dispersion and functionalization of the nanoparticles and fabrication of hybrid large area organic solar cells. The new deposition method can be applied for the fabrication of dye-sensitized solar cells.</p> / Master of Applied Science (MASc)
|
305 |
Plastic Deformation and Fracture Behavior of AI-Mg and AI-Cr AlloysJobba, Mike January 2010 (has links)
<p>This research concerns a study of the deformation behavior and dislocation substructure characteristics resulting from plastic flow in single phase Al-Mg (0-4.11 at%Mg) and Al-Cr (0-0.36at%Cr) alloys. Tensile tests are performed at 298K, 78K, and 4.2K, and strain rate sensitivity tests are performed at 78K for the Ai-Mg alloys, and at 298K and 78K for the Al-Cr alloys. Resistivity measurements are carried out during tensile tests for all alloys deformed at 4.2K. The resulting structures are then studied using SEM and TEM microscopy. Solute strengthening is seen to occur in both systems, along with significant increases in strength and work hardening capacity in all alloys accompanying decreases in temperature. The limit for benefits from solute strengthening appears to lie close to the solubility limit for the Al-Mg system, but no clear limit is observed in the Al-Cr system. Resistivity data seems to indicate that a critical dislocation density is reached before fracture in all Al-Mg alloys studied, but that this critical density decreases with Cr content. Portevin Le-Chatelier (PLC) type instabilities are observed at room temperature in the Al-Mg alloys only, though both systems exhibit adiabatic shearing processes at 4.2K. A dislocation substructure resembling those observed in other Al-Mg alloys is observed, but the Al-Cr alloy dislocation substructure more closely resembles that observed in pure Al. Both substructures are seen to show greater dislocation density, distributed more homogenously over the structure as temperature decreases.</p> / Master of Applied Science (MASc)
|
306 |
SCALING ANALYSIS OF MELTING KINETICS IN RANDOMLY PACKED STEEL SCRAP IN ELECTRIC ARC FURNACE STEEL MAKINGAkseki, Hande 10 1900 (has links)
<p>p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times; color: #242424} p.p2 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times; color: #3c3c3c} span.s1 {color: #3c3c3c} span.s2 {color: #242424}</p> <p>This thesis report the results of a simulation study of the melting kinetics of multiple, randomly distributed, steel scrap pieces. The model used is that previously developed by Li [Li, 2006]. The aim of this study was to better understand the universal features governing the kinetics of multi-piece scrap melting in a liquid pool. We observed the formation of a solidified shell and interfacial gap both in a single scrap piece as well as in randomly distributed multiple scrap melting cases. It is shown that the multiple scrap pieces agglomerate throughout the sample due to solidified shell formation.</p> <p>The key factors affecting melting kinetics of a heat examined were: heat transfer coefficient, initial solid fraction, initial liquid (preheating) and solid temperatures, scrap size and thermal conductivity.</p> <p>A scaling analysis of simulation data of melting kinetics was conducted, identifying suitable characteristic length and time scales through which the melting kinetics across different parameters and processing conditions could be scaled and thus understood in the context of a unified mathematical description.</p> / Master of Applied Science (MASc)
|
307 |
Precipitation of Intermetallic Phases from Rapidly Solidifying Aluminum AlloysPanahi, Damon January 2009 (has links)
<p>Despite all efforts during the last 30-40 years, the formation of metastable Fe-rich and Si-rich intermetallics in dilute aluminum alloys is still an unsolved mystery. Based on the equilibrium Al-Fe-Si phase diagram, in dilute aluminum alloys only one equilibrium intermetallic, namely Al<sub>13</sub>Fe<sub>4</sub>, is expected. It is known, however, that a rapid solidification, i.e. solidification at a high cooling rate, results in dozens of metastable phases seen in the as-cast alloys. It is firmly established that the greater the cooling rate (i.e. the rate of heat extraction), the greater the supercooling (supersaturation) achieved in the course of solidification.</p> <p>Understanding the nature and a sequence of formation of these intermetallic phases precipitating from the supersaturated melt is at the centre of this research. In fact, this endeavor was launched to answer the following fundamental question: "What governs the formation of intermetallic c phases from a rapidly solidifying alloys, in general, and from aluminum alloys, in particular?" Prior to starting this investigation, it was believed that the concept of the driving forces for the beginning of precipitation originated by Miroshnichenko, Cahn and Hillert, could be used to explain experimental findings. Was that belief justified? Although a definite answer to this question has not been found, there are strong indications that the concept is likely operative, although it has to be refined by taking into account the surface energies.</p> <p>To evaluate applicability of this concept to the formation of Fe-rich and Si-rich intermetallics in aluminum alloys, in this research an array of experimental information related to microstructures of as-cast alloys having different compositions are obtained. Then, the collected experimental results are interpreted using the concept of the driving forces for the beginning of precipitation.</p> / Master of Applied Science (MASc)
|
308 |
Microstructure and Mechanical Properties of Al and Al/Si Alloyed TRIP-assisted Steels Produced through Galvanizing Heat TreatmentsBian, Yankui January 2009 (has links)
<p>TRIP-assisted steels combine high strength and good ductility, which makes them attractive to the automotive industry. Simultaneously, galvanizing is essential for the corrosion resistance of these steels. In industrial practice, the processing of TRIP-assisted steels and galvanizing process must be combined.</p> <p>Two Al-alloyed TRIP-assisted steels (<strong>1.0Al: </strong>O.2C-1.SMn-O.SSi-1.0Al (wt.%) and <strong>1.5Al: </strong>O.2C-1.SMn-1.SAl (wt.%)) were investigated in the present research work, where two points are noteworthy. First, the experimental processing routes in the present work are compatible with the continuous galvanizing process; second, it has been shown that the two steels exhibit good galvanizability. The initial microstructure and its evolution during plastic deformation of the two steels were examined. The kinetics of phase transformations taking place during thermal processing and plastic deformation were discussed. These results were linked to the work hardening behaviour with kinematic hardening taken into account.</p> <p>It was confirmed that the retained austenite in the steels obtained through the present galvanizing heat treatments contributed to the work hardening behaviour by transforming to martensite during plastic deformation. The 1.SAl steel exhibited a better work hardening behaviour due to the more stable retained austenite.</p> <p>Retained austenite of higher stability transformed to martensite more gradually during plastic deformation, efficiently attenuating decreases in the instantaneous work hardening rate, dσ/dε, and giving rise to a smoother evolution of the incremental work hardening coefficient, d(Lnσ)/d(Lnε). One of the attenuating mechanisms was the development of back stresses, which contributed kinematic hardening to the overall work hardening. Gradual transformation of retained austenite to martensite continuously supplied new obstacles to dislocations and delayed the saturation of back stresses.</p> <p>Based on the present work and the previous work, it seems possible to process galvanizable Al-alloyed TRIP assisted steels using continuous galvanizing thermal cycles, which implies the possibility to combine continuous galvanizing and thermal processing of TRIP-assisted steels.</p> / Master of Applied Science (MASc)
|
309 |
Nanocomposite Coatings for Biomedical ApplicationsMa, Rong 08 1900 (has links)
<p>New electrochemical deposition methods have been developed for the fabrication of advanced composite coatings for biomedical applications. The methods are based on electrodeposition of biopolymers, such as cathodic electrodeposition of chitosan, anodic electrodeposition of alginic acid and hyaluronic acid. Another approach is based on anodic electropolymerization of polypyrrole. Electrochemical strategies have been discovered for the electrochemical co-deposition of polymers with other functional biomaterials, such as proteins, drugs, bioactive ceramics and bioglass. Bovine serum albumin was used as a model protein for the development of new electrochemical strategies for the fabrication of composite coatings containing proteins. New strategies have been further utilized for the fabrication of novel composites containing hemoglobin. It was found that biopolymers can be used for efficient electrosteric dispersion of bioceramics and bioglass in suspensions. Co-deposition of biopolymers with bioceramics and bioglass from the suspensions resulted in the fabrication of composite organic-inorganic bone substitute materials.<br /> Electrochemical methods have been developed for the deposition of composite coatings containing functional biomaterials in the matrix of conductive polypyrrole. New additives have been developed for the deposition of polypyrrole on low cost stainless steel substrates. The additives enabled the passivation of the stainless steel substrates and charge transfer during anodic electropolymerization. The composite coatings were obtained as monolayers, multilayers or materials of graded composition. <br /> The composition and microstructure of the composite coatings were investigated. The composition of these nanocomposite coatings can be varied by variation in bath composition for electrodeposition. The deposition yield was studied at various deposition conditions. Electrochemical deposition mechanisms have been investigated and discussed. Obtained results pave the way for the fabrication of novel coatings for the surface modification of biomedical implants and for application in advanced biosensors.</p> / Master of Applied Science (MASc)
|
310 |
ADVANCED MATERIALS AND METHODS FOR THE FABRICATION OF ELECTROCHEMICAL SUPERCAPACITORSLi, Jun January 2009 (has links)
<p>Nanostructured manganese oxides in amorphous or various crystalline forms have been found to be promising electrode materials for electrochemical supercapacitors (ES). Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 3-10 nm were prepared by a chemical precipitation method. Electrophoretic deposition (EPD) method and mpregnation techniques have been developed to fabricate thin film and composite electrodes for ES. As-prepared nanofibers and electrodes were studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The capacitive behavior of electrodes was investigated by cyclic voltammetry (CV) and chronopotentiometry method using a three-electrode cell in the mild Na<sub>2</sub>SO<sub>4</sub>.</p> <p>The composite electrodes fabricated by impregnation of manganese dioxide nanofibers and multi-walled carbon nanotubes (MWCNTs) into porous nickel foam and nickel plaque current collectors showed excellent capacitive performance with large material loading of 7-40 mg cm<sup>-2</sup> in 0.1-0.5 M Na<sub>2</sub>SO<sub>4</sub>. MnO<sub>2</sub> nanofibers and MWCNTs can form a porous fibrous network, which is beneficial for the electrolyte access to the active materials. In addition, MWCNTs formed a secondary conductivity network within the porous nickel structures. The highest specific capacitance (SC) of 185 F g<sup>-1</sup> was obtained at a scan rate of 2 mV S<sup>-1</sup> in the 0.5 M Na<sub>2</sub>SO<sub>4</sub> solutions. The effect of the electrolyte concentration, scan rate and active material composition on the capacitive behavior was discussed.</p> <p>Obtained thin film and composite electrodes by EPD showed a capacitive behavior in the 0.1 M Na<sub>2</sub>SO<sub>4</sub> aqueous solutions with a potential range of 0-1.0 V. The highest SC of 412 F g<sup>-1</sup> was obtained for the thin film electrodes at a scan rate 2 mV S<sup>-1</sup> in the 0.1 M Na<sub>2</sub>SO<sub>4</sub>. The SC decreased with increasing deposit mass and scan rate. It was found that the addition of MWCNTs can improve the capacitive performance of manganese dioxide electrodes with smaller equivalent series resistance (ESR). The mechanisms and kinetics of all the deposition methods were discussed.</p> / Master of Applied Science (MASc)
|
Page generated in 0.0824 seconds