• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 3
  • Tagged with
  • 46
  • 46
  • 46
  • 34
  • 12
  • 11
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Experimental characterization of the compressive and shear behavior of square cell titanium honeycomb

Parsons, Ryan Tyler January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Kevin B. Lease / The purpose of this study was to experimentally characterize the compressive and shear behavior of square cell titanium honeycomb cores according to the American Society of Testing and Materials Standards C 365-05 and C 273-06. By varying the honeycomb cell size and height as well as the foil thickness, many configurations of titanium honeycomb were manufactured utilizing a laser welding and expansion method. The test matrix consisted of 1080 compression and 1080 shear specimens. The compression specimens were split evenly into stabilized and unstabilized tests, and the shear specimens were split evenly to test three different shear orientations. At the conclusion of the characterization, a comprehensive statistical analysis was performed on the data. It was determined that both the compressive and shear strengths have a strong dependence on the relative density of the honeycomb. The compressive strength was found to be slightly affected by the presence of a stabilizing face sheet, and largely unaffected by specimen core height. The compressive modulus was affected by both the core height and the presence of a face sheet. Shear strength was found to decrease with increasing core height and was influenced by the shear orientation. Additionally, the rate of increase of shear modulus with respect to relative density was proportional to core height. Although no clear trend was observed, orientation did seem to have an effect on shear modulus. The compression and shear behavior of the honeycomb was compared with experimental results of honeycomb from existing publications and found to be consistent.
12

DESIGN AND PREPARATION OF PLANT OIL-BASED POLYMERS AND THEIR APPLICATIONS

Ahn, Byung-Jun Kollbe January 1900 (has links)
Doctor of Philosophy / Department of Grain Science and Industry / Xiuzhi Susan Sun / Renewable materials are desirable for many applications due to the finite fossil resources and environmental issues. Plant oil is one of the most promising renewable feedstocks. Plant oils and functionalized oleo-chemicals including functionalized soybean oils have become attractive sustainable chemicals for industrial applications. Especially, epoxidized oleo-chemicals such as epoxidized soybean oil (ESO) are one of the most well-known readily available inexpensive functionalized plant oils. In this study, novel polymers and nanocomposites for sustainable materials applications were designed and prepared via ring-opening of epoxide in plant oils, and their chemical and physical properties were characterized. The novel transparent elastomers derived from functionalized plant oils have a great potential as flexible electronic and biological applications with their inherent low toxicity. Especially, their rheological properties showed a potential for pressure sensitive adhesives (PSAs). The dominant thermal stability and transparency were obtained via green processing: one pot, single step, fast reactions in moderate conditions, or solvent-free UV curing conditions. These oleo-based elastomers presented excellent end-use properties for PSAs application comparable to commercial PSA tapes. Based on the principal chemical studies, the roles of the each component have been identified: polymer derived from the ring-opening of epoxides as an elastomer, and dihydroxylated triglycerides as a tackifier. Their interaction was also elucidated with an element label analysis. The mechanical and rheological properties of the oleo-polymer as PSAs were able to be improved with a rosin ester tackifier. In addition, biogreases and bio-thermoplastics were developed via the environmentally benign process, which will contribute to further application on the production of new bio-based materials. Further, this study essays a novel acid functionalized iron/iron oxide nanoparticles catalyst with excellent product yields for epoxide ring opening of oleochemicals for a greener synthetic method of biopolyols, and excellent environmental benefits with life cycle assessment of syntheses. Those functionalized iron/iron oxide core shell nanoparticles catalysts has great potential for biomedical engineering process with the highest magnetization of Fe(0) core among all metals.
13

Y-cracking in continuously reinforced concrete pavements

Momeni, Amir Farid January 1900 (has links)
Master of Science / Department of Civil Engineering / Kyle A. Riding / When transverse cracks meander there is a high possibility for transverse cracks to meet at a point and connect to another transverse crack, creating a Y-crack. Y-cracks have been blamed for being the origin of punchouts and spallings in CRCPs. When the direction of maximum principal stress changes, it could cause a change in the crack direction, potentially forming a Y-crack. Finite Element Models (FEMs) were run to model the change in principal stress direction based on design and construction conditions. The finite element model of CRCP using typical Oklahoma CRCP pavement conditions and design was assembled. The model included the concrete pavement, asphalt concrete subbase, and soil subgrade. The effect of areas of changed friction on the direction of principal stress was simulated by considering a patch at the pavement-subbase interaction. Investigated factors related to this patch were location of patch, friction between patch and subbase, and patch size. Patches were placed at two different locations in the pavement: a patch at the corner of the pavement and a patch at the longitudinal edge between pavement ends. A change in the friction at the corner had a large effect on the stress magnitude and direction of principal stress, while a patch in the middle did not significantly change the stress state. Also, patch size had a noticeable effect on stress magnitude when the patch was at the corner. Another model was developed to understand the effect of jointed shoulder on direction of maximum principal stress. Analysis of this model showed that the stresses were not symmetric and changed along the width of the pavement. This meandering pattern shows a high potential for Y-cracking. Also, several finite element models were run to understand the effects of different shrinkage between mainline and shoulder. In order to simulate the effects of the differential drying shrinkage between the hardened mainline concrete and the newly cast shoulder, different temperature changes were applied on the mainline and shoulder. For these models, the orientation of the maximum principal stress was not significantly changed from different amounts of temperature decreases between mainline and shoulder. Also, effect of different longitudinal steel percentages was investigated by comparing two finite element models with different steel percentage. The model with higher steel percentage (0.7%) indicated more variation in stress, potentially leading to more crack direction diverging.
14

Epitaxial growth of icosahedral boron arsenide on silicon carbide substrates: improved process conditions and electrical properties

Zhang, Yi January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / James H. Edgar / The exceptional radiation resistance, high melting point, and wide energy bandgap (3.2 eV) of icosahedral boron arsenide, B[subscript]12As[subscript]2, make it an attractive candidate for applications in radiation intense environments, for example, in radioisotope batteries. These devices have potential lifetimes of decades rather than days or weeks that are typical of conventional chemical power cells. Solid state neutron detectors are another potential application of this semiconductor, as the boron-10 isotope has a high thermal neutron capture cross-section, orders of magnitude higher than most elements. To produce high quality crystalline B[subscript]12As[subscript]2 for these applications, this research focused on the epitaxy and electrical properties of B[subscript]12As[subscript]2 thin films. The major findings include the following. Twin-free heteroepitaxial B[subscript]12As[subscript]2 layers were obtained on m-plane 15R-SiC and c-plane 4H-SiC inclined 4° and 7° off-axis in the [1-100] direction. These substrates exposed asymmetric step-terrace surface structures that force B[subscript]12As[subscript]2 layers to adopt a single orientation, thus, twins were eliminated. Consequently, the crystal quality was greatly improved over films on on-axis c-plane 6H-SiC, yielding a maximum hole mobility of 80 cm[superscript]2V[superscript]-1s[superscript]-1, nearly 100 times higher than previously reported values. B[subscript]12As[subscript]2 epilayers grown at 1300°C had the lowest defect densities, smallest residual strains, highest mobility and highest deposition rate. Excess AsH[subscript]3 concentration was advantageous to prevent the loss of arsenic from the epilayer. Undoped B[subscript]12As[subscript]2 exhibited a variable-range-hopping conduction, indicating it was a highly disordered system. All films were p-type with a room temperature hole concentration on the order of 10[superscript]12~10[superscript]15cm[superscript]-3. The thermal activation energy of acceptors varied from 0.15 eV to 0.33 eV. The Hall mobility was dominated by impurity scattering at low temperatures and by polar phonon scattering at high temperatures. H, C, O and Si were the major impurities present in the undoped B[subscript]12As[subscript]2 films with concentrations on the order of 10[superscript]18~10[superscript]19 cm[superscript]-3. Si doping and annealing decreased the resistivity by up to two orders of magnitude. The density of localized states was small in the undoped B[subscript]12As[subscript]2 as the intrinsic acceptor levels (IALs) were compensated by the boron interstitials. However, in Si-doped B[subscript]12As[subscript]2, Si may prevent the interstitial boron atoms from compensating the IALs, yielding a decreased density of localized states. The Hall mobility of B[subscript]12As[subscript]2 epilayer was significantly reduced with increasing silicon concentration.
15

Eco-friendly driven remediation of the indoor air environment: the synthesis of novel transition metal doped titania/silica aerogels for degradation of volatile and semi-volatile organic compounds

Baker, Schuyler Denton January 1900 (has links)
Master of Science / Department of Chemistry / Kenneth Klabunde / Remediation of the indoor environment led to the development of novel catalysts which can absorb light in the visible range. These catalysts were prepared using the wet chemistry method known as sol-gel chemistry because preparation via sol-gel provides a homogeneous gel formation, which can be treated via supercritical drying to produce an aerogel. These aerogels have been found to have high surface areas when a combination of titania/silica is used. The increase in surface area has been shown to enhance the activity of the catalysts. Mixed metal oxide systems were prepared using titanium isopropoxide and tetraethyl orthosilicate to yield a 1:1 system of titania/silica (TiO2/SiO2). These systems were doped during the initial synthesis with transition metals (Mn or Co) to create mixed metal oxide systems which absorb light in the visible light range. These materials were assessed for potential as heterogeneous catalysts via gas-solid phase reactions with acetaldehyde. Degradation of acetaldehyde as well as the formation of CO2 was monitored via gas chromatography-mass spectrometery. To increase the activity, visible light was introduced to the system. Experiments have shown that a 10 mol % manganese doped titania/silica system, in the presence of light, can degrade acetaldehyde. The cobalt doped counterpart showed dark activity in the presence of acetaldehyde resulting in the formation of CO2 without the addition of visible light. In the hope of increasing surface area a mixed solvent (toluene/methanol) synthesis procedure was applied to the manganese doped catalyst. The resulting materials were of a low surface area but showed a significant increase in degradation of acetaldehyde. Examination of the interactions between mixed metal oxide systems and semivolatile organic compounds (SVOCs) was studied. The pollutant, triphenyl phosphate, was dissolved in n-pentane and exposed to 10 mg of a given catalyst. These reactions were monitored using UVVis. All systems but the manganese doped titania/silica system resulted in the observation of no activity with triphenyl phosphate. The manganese doped catalyst shown a peculiar activity, the increase in absorbance of the triphenyl phosphate peaks as well as the formation of a new peak.
16

Synthesis and characterization of bulk single crystal hexagonal boron nitride from metal solvents

Clubine, Benjamin January 1900 (has links)
Master of Science / Department of Chemical Engineering / James H. Edgar / Boron nitride is a purely synthetic material that has been known for over 150 years but only recently has sparked interest as a semiconductor material due to its potential in ultraviolet lasing and neutron detection. Thin-layer hexagonal boron nitride (hBN) is probably most attractive as a complementary material to graphene during its intense research endeavors. But for hBN to be successful in the realm of semiconductor technology, methods for growing large single crystals are critical, and its properties need to be accurately determined. In this study, hBN crystals were grown from metal solvents. The effects of soak temperature, soak time, source materials and their proportions on hBN crystal size and properties were investigated. The largest crystals of hBN measured five millimeters across and about 30 micrometers thick by precipitation from BN powder dissolved in a nickel-chromium solvent at 1700°C. High temperatures promoted outward growth of the crystal along the a-axis, whereas low temperatures promoted growth along the c-axis. Crystal growth at high temperatures also caused bulk hBN to adopt a triangular habit rather than a hexagonal one. A previously unreported method of synthesizing hBN was proven successful by substituting BN powder with elemental boron and a nitrogen ambient. XRD and Raman spectroscopy confirmed hBN from solution growth to be highly crystalline, with an 8.0 cm[superscript]-1 FWHM of the Raman peak being the narrowest reported. Photoluminescence spectra exhibited peaks mid-gap and near the band edge, suggesting impurities and defects in the hBN samples. However, high-purity reactants and post-growth annealing showed promise for synthesizing semiconductor-grade hBN. Several etchants were explored for defect-selective etching of hBN. A molten eutectic mixture of KOH/NaOH was the most effective defect-selective etchant of hBN at temperatures of 430-450°C for about one minute. The two prevalent hexagonal etch pit morphologies observed were deep, pointed-bottom pits and shallow, flat-bottom pits. TEM and SAED confirmed basal plane twists and dislocations in hBN crystals, but due to the highly anisotropic nature of hBN, their existence may be inevitable no matter the growth technique.
17

Vapor growth of mercuric iodide tetragonal prismatic crystals

Ariesanti, Elsa January 1900 (has links)
Doctor of Philosophy / Department of Mechanical and Nuclear Engineering / Douglas McGregor / The effect of polyethylene addition on the growth of mercuric iodide (HgI[supscript]2) tetragonal prismatic crystals is examined. Three types of polyethylene powder are utilized: low molecular weight (¯Mw ~ 4 x 103), ultra high molecular weight (¯Mw ~ 3 x 6 106), and spectrophotometric grade polyethylenes. Among these types of polyethylene, the low molecular weight polyethylene produces the most significant change in HgI[supscript]2 morphology, with {110} being the most prominent crystal faces. Thermal desorption - gas chromatography/mass spectroscopy (TD-GC/MS) studies show that thermal desorption of the low molecular weight polyethylene at 100°C and 150°C produce isomers of alkynes, odd nalkanes, and methyl (even-n) alkyl ketones. HgI[supscript]2 growth runs with n-alkanes, with either neicosane, n-tetracosane, or n-hexatriacontane, cannot replicate the crystal shapes produced during growth with the low molecular weight polyethylene, whereas HgI[supscript]2 growth runs with ketones, with either 3-hexadecanone or 14-heptacosanone, produce HgI[supscript]2 tetragonal prismatic crystals, similar to the crystals grown with the low molecular weight polyethylene. C-O double bond contained in any ketone is a polar bond and this polar bond may be attracted to the mercury atoms on the top-most layer of the {110} faces through dipoledipole interaction. As a result, the growth of the {110} faces is impeded, with the crystals elongated in the [001] direction and bounded by the {001} faces along with large, prismatic {110} faces.
18

Sublimation growth of ALN bulk crystals and high-speed CVD growth of SiC epilayers, and their characterization

Lu, Peng January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / James H. Edgar / The effects of process conditions on the material’s properties were investigated for the sublimation growth of aluminum nitride and the epitaxial growth of silicon carbide. Since the mid 1990’s, these semiconductors have made new types of high power electronics and short wavelength optoelectronics that were never before feasible. The sublimation growth of AlN crystals on SiC seeds was carried out to produce high quality AlN bulk crystals. Si-face, 3.5 º off-axis 6H-SiC (0001) and 8 º off-axis 4H-SiC (0001) wafers were used as the substrates. An investigation of the initial growth demonstrated 1800 – 1850ºC was the optimum temperature for AlN growth. By optimizing the temperature gradient, large area AlN layer was deposited. Consecutive growths and continuous growth were performed to enlarge the crystal thickness. Single-crystalline AlN layers, each with a thickness of 2 mm and a diameter of 20 mm, were produced. X-ray diffraction confirmed the grown AlN had good crystal quality. Approximately 3 – 6 at% of Si and 5 – 8 at% of C were detected in the crystals by x-ray photoelectron spectroscopy, which came from the decomposition of SiC seeds and the degradation of the graphite components in the furnace. Molten KOH/NaOH etching revealed the dislocation density decreased from 108 cm-2 to 106 cm-2 as the AlN layer thickness increased from 30 μm to 2 mm. Epitaxial growth of SiC was carried out in a chemical vapor deposition system. High-quality 6H-SiC and 4H-SiC homoepitaxial films were produced at growth rates up to 80 μm/hr by using a novel single precursor, methyltrichlorosilane (MTS). Inclusions of 3C-SiC were circumvented by employing 8º mis-orientated substrates. Adjusting the H2/Ar flow ratio in the carrier gas effectively changed the C/Si ratio in the gas phase due to the reaction between H2 and the graphite heater; thereby, influencing surface roughness and dislocation density. Low H2/Ar ratios of 0.1 and 0.125 produced smooth surfaces without step-bunching. Higher H2/Ar ratios of 0.2 and 0.33 enhanced the conversion of basal plane dislocations into threading edge dislocations, and reduced the density of basal plane dislocations to approximately 600 cm-2.
19

Epitaxial growth of silicon carbide on on-axis silicon carbide substrates using methyltrichlorosilane chemical vapor deposition

Swanson, Kyle January 1900 (has links)
Master of Science / Department of Chemical Engineering / James H. Edgar / 4H-silicon carbide (4H-SiC) is a wide band gap semiconductor with outstanding capabilities for high temperature, high power, and high frequency electronic device applications. Advances in its processing technology have resulted in large micropipe-free single crystals and high speed epitaxial growth on off-axis silicon face substrates. Extraordinarily high growth rates of high quality epitaxial films (>100 [Mu]m per hour) have been achieved, but only on off-axis substrates (misoriented 4° to 8° from the (0001) crystallographic plane). There is a strong incentive to procure an on-axis growth procedure, due to the excessive waste of high quality single crystal associated with wafering off-axis substrates. The purpose of this research was to develop a reliable process for homoepitaxial growth of 4H-SiC on on-axis 4H-SiC. Typically the use of on-axis SiC for epitaxial growth is undesired due to the increased probability of 3C-SiC inclusions and polycrystalline growth. However, it is believed that the presence of chlorine during reaction may reduce the presence of 3C-SiC and improve the quality of the epitaxial film. Therefore homoepitaxial SiC was deposited using methyltrichlorosilane (MTS) and ethane sources with carrier gases consisting of argon-hydrogen mixtures. Ethane was used to increase the C/Si ratio, to aid in the prevention of 3C-SiC, and to help eliminate silicon droplets deposited during epitaxial growth. Deposition occurred in a homemade, quartz, cold wall chemical vapor deposition reactor. Epitaxial films on on-axis 4H-SiC were deposited without the presence of 3C-SiC inclusions or polycrystalline SiC, as observed by defect selective etching, scanning electron microscopy and optical microscopy. Large defect free areas, [similar to]5 mm[superscript]2, with epitaxial film thicknesses of [similar to]6 [Mu]m were grown on on-axis 4H-SiC. Epitaxial films had approximately an 80%, [similar to]20 cm[superscript]-2, decrease in defect density as compared to the substrates. The growth rate was independent of face polarity and orientation of the substrate. The optimal temperature for hydrogen etching, to promote the smoothest epitaxial films for on-axis substrates (both C- and Si-polarities), is [similar to]1550 °C for 10 minutes in the presence of 2 slm hydrogen. The optimum C/Si ratio for epitaxial growth on on-axis 4H-SiC is 1; excess carbon resulted in the codeposition of graphite and cone-shaped silicon carbide defects.
20

Numerical modeling and experimental investigation of laser-assisted machining of silicon nitride ceramics

Shen, Xinwei January 1900 (has links)
Doctor of Philosophy / Department of Industrial & Manufacturing Systems Engineering / Shuting Lei / Laser-assisted machining (LAM) is a promising non-conventional machining technique for advanced ceramics. However, the fundamental machining mechanism which governs the LAM process is not well understood so far. Hence, the main objective of this study is to explore the machining mechanism and provide guidance for future LAM operations. In this study, laser-assisted milling (LAMill) of silicon nitride ceramics is focused. Experimental experience reveals that workpiece temperature in LAM of silicon nitride ceramics determines the surface quality of the machined workpiece. Thus, in order to know the thermal features of the workpiece in LAM, the laser-silicon nitride interaction mechanism is investigated via heating experiments. The trends of temperature affected by the key parameters (laser power, laser beam diameter, feed rate, and preheat time) are obtained through a parametric study. Experimental results show that high operating temperature leads to low cutting force, good surface finish, small edge chipping, and low residual stress. The temperature range for brittle-to-ductile transition should be avoided due to the rapid increase of fracture toughness. In order to know the temperature distribution at the cutting zone in the workpiece, a transient three-dimensional thermal model is developed using finite element analysis (FEA) and validated through experiments. Heat generation associated with machining is considered and demonstrated to have little impact on LAM. The model indicates that laser power is one critical parameter for successful operation of LAM. Feed and cutting speed can indirectly affect the operating temperatures. Furthermore, a machining model is established with the distinct element method (or discrete element method, DEM) to simulate the dynamic process of LAM. In the microstructural modeling of a β-type silicon nitride ceramic, clusters are used to simulate the rod-like grains of the silicon nitride ceramic and parallel bonds act as the intergranular glass phase between grains. The resulting temperature-dependent synthetic materials for LAM are calibrated through the numerical compression, bending and fracture toughness tests. The machining model is also validated through experiments in terms of cutting forces, chip size and depth of subsurface damage.

Page generated in 0.2439 seconds