• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the strength of defective graphene materials

Wang, Congwei January 2014 (has links)
Graphene is the first 2D material consisting of carbon atoms densely packed into planar structures. Graphene oxide (GO) is the intermediate derivative of chemically-produced graphene, which retains 2D basal plane structures but is also decorated with functional groups along the basal plane and edges. This functionality allows self-assembly of planar sheets into a paper-like material. However, formations of both intrinsic defects within the sheet structures as well as larger scale extrinsic defects in the paper are expected to significantly degrade mechanical performance. Strength provides the most direct evidence of defect related mechanical behaviour and is therefore targeted for understanding defect effects in GO paper. Such evaluations are crucial both from a technological perspective of realizing designed functions and from a fundamental interest in understanding structure-mechanics in 2D nanomaterials. A complete strategy of performing mechanical testing at different length scales is thus reported to provide a comprehensive description of GO strength. Both conventional larger scale mechanical testing as well as novel smaller length scale evaluations, using in situ atomic force microscopy (AFM) combined with scanning electron microscopy (SEM) and optical microscopy as well as structural probing using synchrotron FT-IR microspectroscopy, were applied to GO materials. Results showed that large structural defects determined mechanical properties of GO papers due to stress concentration effects whereas smaller scale intrinsic effects were defined by interfacial defects and stress concentrations within sheets. Synchrotron FT-IR microspectroscopy provided molecular deformation mechanisms in GO paper, which highlighted the interaction between in-plane C=C and cross-linking C=O bonds. A comprehensive description of macroscopic GO paper using evaluations of strength at the range of length scales studied was attempted, with a good correlation between predictions and experimental observations. This thesis therefore provides a hierarchical understanding of the defects impact on the strength of graphene-based materials from the macroscale to the nanoscale.
2

Graphene based nanocomposites for mechanical reinforcement

Sellam, Charline January 2015 (has links)
In this work the potential of graphene-like particles for mechanical reinforcement is investigated. Different polymer processing methods are studied from traditional ones to more advanced techniques. The potential of graphene as a reinforcement for polymer composites is addressed as a result of polymer modifications and the morphology of the graphene like particles. First, a composites of polycarbonate (PC) and graphite nanoplatelets (GNP) are produced by a traditional melt-mixing method. The GNP composites present a low mechanical reinforcing efficiency which is believed to be due to a poor dispersion of the GNP and a weak interaction between the GNP and the matrix. Secondly, solution cast composites of polyvinyl alcohol (PVA) with very low loadings of graphene oxide (GO) are produced. The polymer morphology undergoes some modifications after the addition of GO. A strong increase of the Tg is observed after the addition of GO which is the result of a reduction in polymer mobility, while a dramatic increase of the mechanical properties is seen as well. Uni-axial drawing is applied in order to align the particles. No polymer modifications are observed between the drawn PVA and the drawn nanocomposites due to the strong alignment of the polymer chains during the drawing. Mechanical reinforcement is observed after addition of the GO showing real reinforcement. Finally, a more advanced processing method is investigated using spraying. The condition of spraying a layer of polymer and GO is studied. Finally a hierarchical composite of PVA - GO is produced by this spraying method. 150 bi-layers are deposited to create a film with improved mechanical properties at a loading of 5.4 wt.% GO. The Young’s modulus and strength of these films doubled or nearly doubled which is believed to be due to the high level of structural organization of the layered nanocomposite incorporating the 2D GO nanofiller, together with hydrogen bonding between the PVA and the GO sheets.
3

Processing and properties of graphene reinforced glass/ceramic composites

Porwal, Harshit January 2015 (has links)
This research provides a comprehensive investigation in understanding the effect of the addition of graphene nano-platelets (GNP) on the mechanical, tribological and biological properties of glass/ceramic composites. We investigated two kinds of materials namely amorphous matrices like glasses (silica, bioglass) and polycrystalline matrices like ceramics (alumina). The idea was to understand the effect of GNP on these matrices as GNP was expected to behave differently in these composites. Bioglass (BG) was also chosen as a matrix material to prepare BG-GNP composites. GNP can improve the electrical conductivity of BG which can be used further for bone tissue engineering applications. The effect of GNP on both electrical conductivity and bio-activity of BG-GNP composites was investigated in detail. There were three main problems for fabricating these novel nano-composites: 1) Production of good quality graphene; 2) Homogeneous dispersion of graphene in a glass/ceramic matrix and; 3) Retention of the graphitic structure during high temperature processing. The first problem was solved by synthesising GNP using liquid phase exfoliation method instead of using a commercially available GNP. The prepared GNP were ~1 μm in length with a thickness of 3-4 layers confirmed using transmission electron microscopy. In order to solve the second problem various processing techniques were used including powder and colloidal processing routes along with different solvents. Processing parameters were optimised to fabricate glass/ceramic-GNP composite powders. Finally in order to avoid thermal degradation of the GNP during high temperature processing composites were sintered using spark plasma sintering (SPS) technique. Fully dense composites were obtained without damaging GNP during the sintering process also confirmed via Raman spectroscopy. Finally the prepared composites were characterised for mechanical, tribological and biological applications. Interestingly fracture toughness and wear resistance of the silica nano-composites increased with increasing concentration of GNP in the glass matrix. There was an improvement of ~45% in the fracture toughness and ~550% in the wear resistance of silica-GNP composites with the addition of 5 vol% GNP. GNP was found to be aligned in a direction perpendicular to the applied force in SPS. In contrast to amorphous materials fracture toughness and scratch resistance of alumina-GNP composites increased only for small loading of GNP and properties of the composites decreased after a critical concentration. There was an improvement of ~40% in the fracture toughness with the addition of only 0.5 vol% GNP in the alumina matrix while the scratch resistance of the composite increased by ~10% in the micro-ductile region. Electrical conductivity of the BG-GNP composite was increased by ~9 orders of magnitude compared to pure BG. In vitro bioactivity tests performed on BG-GNP composites confirmed that the addition of GNP to BG matrix also improved the bioactivity of the nano-composites confirmed using XRD analysis. Future work should focus on understanding electrical and thermal properties of these novel nano-composites.

Page generated in 0.101 seconds