• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2164
  • 73
  • Tagged with
  • 2807
  • 2807
  • 2807
  • 112
  • 95
  • 89
  • 75
  • 59
  • 58
  • 58
  • 58
  • 48
  • 45
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Undercooling and rapid solidification of Fe-Cr-Ni ternary alloys

Koseki, Toshihiko, 1958- January 1994 (has links)
Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1994. / Includes bibliographical references. / by Toshihiko Koseki. / Sc.D.
212

Test methods and analysis for glass-ceramic matrix composites

Schutz, James Branch January 1991 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1991. / Includes bibliographical references (leaves 157-168). / by James Branch Schutz. / Ph.D.
213

White LED for general illumination applications / White light emitting device for general illumination applications

Li, Fung Yuen Ken January 2007 (has links)
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2007. / Includes bibliographical references. / In the 21st century, mankind faces problem of energy crisis through depletion of fossil fuels as well as global warning through the production of excessive greenhouse gases. Hence, there is an urgent need to look for new sources of renewable energy or ways to utilize energy more effectively. Solid state lighting (SSL) is a major area of research interest to use energy in a more efficient manner. Early light emitting devices (LEDs) were originally limited their use for low power indication lights. Later research produces high brightness LEDs (HB-LEDs) as well as blue color LEDs. This brings to reality of the entire visible light spectrum. White light is also made possible. As with other technologies, numerous obstacles will have to be surmounted in bringing LEDs from the laboratory to the marketplace. LEDs will also have to compete with established technologies such as incandescent and fluorescent lighting. This thesis will describe the current state of high powered LEDs, examine challenges faced by LEDs and look at future markets. Evaluation in the potential of LEDs for general illumination will be carried out through cost modeling and performance analysis. / by Ken, Li Fung Yuen. / M.Eng.
214

Stability of lithium aluminum manganese oxide cathodes for rechargeable lithium batteries

Jang, Young-Il, 1968- January 1999 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1999. / Includes bibliographical references. / Lithium manganese oxides have attracted wide attention as low-cost, nontoxic intercalation cathode materials for rechargeable lithium batteries. In this work, the stability of these compounds during synthesis and in use has been studied in several respects. (1) Phase stability of LiMnO2 polymorphs has been determined under the high temperature synthesis conditions. Effects of temperature, oxygen partial pressure, and dopant (Al) content on the phase stability have been discussed based on a possible stability mechanism. (2) The mechanism of improved cycling stability of electrochemically transformed spinel compared to conventional spinel has been identified. Atomic rearrangement from the ordered rocksalt to spinel type cation ordering results in an antiphase nanodomain structure, which becomes a ferroelastic domain structure during the cubic ---> tetragonal Jahn-Teller transformation, and thereby accommodates the transformation strains. (3) Al-doped spinels exhibit much improved capacity stability at elevated temperatures compared to undoped spinels. This effect has been discussed with respect to proposed mechanisms of Mn dissolution and capacity loss. (4) Magnetic properties are critically influenced by phase stability, cation ordering, and Mn valence in lithium manganese oxides. In the paramagnetic temperature regime, it has been observed that antiferromagnetic interactions between the Mn ions are strongest in the orthorhombic phase among LiMnO2 polymorphs having the average Mn valence of 3+, while decreasing Mn valence strengthens the antiferromagnetic interactions in LixMn2O4 spinel. At temperatures below the paramagnetic temperature regime, spin-glass behavior is observed in both LixMn2O4 and monoclinic LiMnO2 compounds, which is attributed to geometrical frustration due to structure ( cation ordering) and magnetic disorder due to a disordered distribution of Mn valence. As spin-glass behavior is commonly observed in both well-crystallized, conventional spinel and highly disordered, transformed spinel, magnetic characterization cannot easily be used to distinguish the two different spinels. / by Young Il-Jang. / Ph.D.
215

Controlling microstructure of nanocrystalline thermoelectrics through powder processing

Humphry-Baker, Samuel A January 2014 (has links)
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2014. / 220 / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 122-127). / Bismuth Telluride and its solid solutions are currently front running thermoelectric materials because of their high figure of merit. When processed via mechanical alloying to obtain nanocrystalline structures, their efficiency is increased dramatically, due to enhanced phonon scattering at grain boundaries. However, the excess free energy of these interfaces renders them inherently susceptible to grain growth, therefore there is a need for materials with enhanced thermal stability. Despite this, little is known about the relevant processing science of these materials with respect to mechanical alloying and powder consolidation. This shortcoming is addressed here via systematic study of the processing-structure relationships that govern these processing operations. Firstly, during mechanical alloying, the primary mechanism of mixing between elemental constituents is revealed, as well as the limitations to subsequent grain refinement. The resultant behaviour is unique in the literature on mechanical alloying, due to the unusual thermal and thermodynamic properties of the compound and its elements, rendering deformation-induced heating effects especially prevalent. Next, during sintering operations of the powders, the kinetics of grain growth and porosity evolution were studied. By quantifying these processes, a thermal budget map for the nanocrystalline compound is constructed, to allow predictive powder and guidance of both processing and device operation at elevated temperatures. Finally, based on the improved understanding in processing science and thermal stability of these materials, a new class of thermally stable composites is engineered, with improved thermal stability, and hence enhanced thermoelectric properties. / by Samuel A. Humphry-Baker. / Ph. D.
216

Targeted magnetic nanoparticles for remote manipulation of protein aggregation

Loynachan, Colleen January 2014 (has links)
Thesis: S.B., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2014. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 37-39). / Local heat delivered by magnetic nanoparticles (MNPs) selectively attached to their target proteins can be used to manipulate and break up toxic or obstructive aggregates. We applied this magnetic hyperthermia treatment to the amyloid beta (A[beta]) peptide, which unnaturally folds and self-assembles forming amyloid fibrils and insoluble plaques characteristic of amyloidgenic diseases such as Alzheimer's disease. We demonstrate remote disaggregation of A[beta] aggregates using heat dissipated by ferrite MNPs in the presence of an alternating magnetic field (AMF). Specific targeting was achieved by MNP functionalization with a targeting peptide sequence that binds a hydrophobic domain of A[beta]. AMF parameters and MNP composition and size were tailored to maximize hysteretic power losses. Transmission electron microscopy image analysis and thioflavin T fluorescence spectroscopy were used to characterize the morphology and size distribution of aggregates before and after AMF stimulus. We found that the AMF stimulus is effective at destabilizing A[beta] deposits and causing a reduction in aggregate size. This targeting scheme has potential as a therapy for amyloidosis and as a minimally invasive tool for analyzing and controlling protein aggregation. / by Colleen Loynachan. / S.B.
217

Designing dynamic mechanics in self-healing nanocomposite hydrogels

Li, Qiaochu, Ph. D. Massachusetts Institute of Technology January 2018 (has links)
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2018. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 127-136). / The functional versatility and endurable self-healing capacity of soft materials in nature is found to originate from the dynamic supramolecular scaffolds assembled via reversible interactions. To mimic this strategy, extensive efforts have been made to design polymer networks with transient crosslinks, which lays the foundation for synthetic self-healing hydrogels. Towards the development of stronger and faster self-healing hydrogels, understanding and controlling the gel network dynamics is of critical importance, since it provides design principles for key properties such as dynamic mechanics and self-healing performance. For this purpose, a universal strategy independent of exact crosslinking chemistry would be regulating the polymer material's dynamic behavior by optimal network design, yet current understanding of the relationship between network structure and macroscopic dynamic mechanics is still limited, and implementation of complex network structure has always been challenging. In this thesis, we show how the dynamic mechanical properties in a hydrogel can be controlled by rational design of polymer network structures. Using mussel-inspired reversible catechol coordination chemistry, we developed a nanocomposite hydrogel network (NP gel) with hierarchical assembly of polymer chains on iron oxide (Fe3O4) nanoparticles as network crosslinks. With NP gel as a model system, we first investigated its unique dynamic mechanics in comparison with traditional permanent and dynamic gels, and discovered a general approach to manipulate the network dynamics by controlling the crosslink structural functionality. Then we further explored the underlying relationship between polymer network structure and two key parameters in relaxation mechanics, which elucidated universal approaches for designing relaxation patterns in supramolecular transient gel network. Finally, by utilizing these design principles, we designed a hybrid gel network using two crosslinking structures with distinct relaxation timescales. By simply adjusting the ratio of two crosslinks, we can precisely tune the material's dynamic mechanics from a viscoelastic fluid to a rigid solid. Such controllability in dynamic mechanics enabled performance optimization towards mechanically rigid and fast self-healing hydrogel materials. / by Qiaochu Li. / Ph. D.
218

Diffusion of hydrogen in titanium

Abdul-Hamid, Omar Salman, 1963- January 1993 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1993. / Includes bibliographical references (leaves 183-190). / by Omar Salman Abdul-Hamid. / Ph.D.
219

Effect of a porous collagen-glycosaminoglycan copolymer on early tendon healing in a novel animal model

Louie, Libby K January 1997 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1997. / Includes bibliographical references (leaves 187-196). / by Libby K. Louie. / Ph.D.
220

Computational studies of stress and structure development resulting from the coalescence of metallic islands

Takahashi, Andrew Rikio January 2007 (has links)
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2007. / Includes bibliographical references (leaves 63-65). / Thin film component properties are critical design elements in almost all industries. These films are particularly important in the performance of micro- and nano-electromechanical systems (MEMS and NEMS). Residual stress in thin film components is often treated as an unavoidable side effect of processing steps and the degree of residual stress can drastically affect the performance and properties of the final product. While high levels of residual stress are often detrimental to performance, control of the stress and stress gradients can also be used to enhance performance and even generate new capabilities. The work presented in this thesis examines the role of island coalescence in the development of structure and stress in thin films. The primary methods of investigation are molecular dynamics (MD) and finite element analysis (FEA). The semi-empirical MD calculations show that coalescence is a very rapid process for unconstrained spheres and for hemispheres allowed to slide on a frictionless substrate. Particle rotations are commonly observed during the coalescence calculations. The extent of neck formation between 2 particles is consistent with continuum models even down to length scales which would normally be outside the range in which the models might be expected to be applicable. The MD calculations also show that internal island defects may be induced by the island coalescence process, but only for a particular range of island sizes. We present an energetic model for the existence of such a size range and have located experimental evidence in the literature for such defects. Our FEA work extends an earlier study on the effects of contact angle on island coalescence. Our FEA study of islands with greater than 90 degree contact angle coalescence shows that neck formation occurs very similarly to the free sphere coalescence case. We conclude that MD and FEA calculations are useful tools in analyzing the island coalescence process and can provide mechanistic insight beyond what is available from the more general continuum models. / by Andrew Rikio Takahashi. / S.M.

Page generated in 0.1331 seconds