Spelling suggestions: "subject:"matematerials thermomechanical properties"" "subject:"matematerials hermomechanical properties""
11 |
Thermomechanical modeling of porous ceramic-metal composites accounting for the stochastic nature of their microstructureJohnson, Janine 24 November 2009 (has links)
Porous ceramic-metal composites, or cermets, such as nickel zirconia (Ni-YSZ), are widely used as the anode material in solid oxide fuel cells (SOFC). These materials need to enable electrochemical reactions and provide the mechanical support for the layered cell structure. Thus, for the anode supported planar cells, the thermomechanical behavior of the porous cermet directly affects the reliability of the cell. Porous cermets can be viewed as three-phase composites with a random heterogeneous microstructure. While random in nature, the effective properties and overall behavior of such composites can still be linked to specific stochastic functions that describe the microstructure. The main objective of this research was to develop the relationship between the thermomechanical behavior of porous cermets and their random microstructure. The research consists of three components. First, a stochastic reconstruction scheme was developed for the three-phase composite. From this multiple realizations with identical statistical descriptors were constructed for analysis. Secondly, a finite element model was implemented to obtain the effective properties of interest including thermal expansion coefficient, thermal conductivity, and elastic modulus. Lastly, nonlinear material behaviors were investigated, such as damage, plasticity, and creep behavior. It was shown that the computational model linked the statistical features of the microstructure to its overall properties and behavior. Such a predictive computational tool will enable the design of SOFCs with higher reliability and lower costs.
|
12 |
Stucture and thermomechanical behavior of nitipt shape memory alloy wiresLin, Brian E. 10 April 2009 (has links)
The objective of this work is to understand the structure-property relationships in a pseudoelastic composition of polycrystalline NiTiPt (Ti-42.7 at% Ni-7.5 at% Pt). Structural characterization of the alloy includes grain size determination and texture analysis while the thermo-mechanical properties are explored using tensile testing. Variation in heat treatment is used as a vehicle to modify microstructure. The results are compared to experiments on Ni-rich NiTi alloy wires (Ti-51.0 at% Ni), which are in commercial use in various biomedical applications. With regards to microstructure, both alloys exhibit a <111> fiber texture along the wire drawing axis, however the NiTiPt alloy's grain size is smaller than that of the Ni-rich NiTi wires, while the latter materials contain second phase precipitates. Given the nanometer scale grain size in NiTiPt and the dispersed, nanometer scale precipitate size in NiTi, the overall strength and ductility of the alloys are essentially identical when given appropriate heat treatments. Property differences include a much smaller stress hysteresis and smaller temperature dependence of the transformation stress for NiTiPt alloys compared to NiTi alloys. Potential benefits and implications for use in vascular stent applications are discussed.
|
Page generated in 0.1319 seconds