• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 11
  • 7
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 107
  • 107
  • 107
  • 43
  • 21
  • 21
  • 19
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Computational and analytical modelling of composite structures based on exact and higher order theories.

Tabakov, Pavel. January 1995 (has links)
The objective of the present study is the computational and analytical modelling of a stress and strain state of the composite laminated structures. The exact three dimensional solution is derived for laminated anisotropic thick cylinders with both constant and variable material properties through the thickness of a layer. The governing differential equations are derived in a such form that to satisfy the stress functions and are given for layered cylindrical shell with open ends. The solution then extended to the laminated cylindrical shells with closed ends, that is to pressure vessels. Based on the accurate three-dimensional stress analysis an approach for the optimal design of the thick pressure vessels is formulated. Cylindrical pressure vessels are optimised taking the fibre angle as a design variable to maximise the burst pressure. The effect of the axial force on the optimal design is investigated. Numerical results are given for both single and laminated (up to five layers) cylindrical shells. The maximum burst pressure is computed using the three-dimensional interactive Tsai-: Wu failure criterion, which takes into account the influence of all stress components to the failure. Design optimisation of multilayered composite pressure vessels are based on the use of robust multidimensional methods which give fast convergence. Transverse shear and normal deformation higher-order theory for the solution of dynamic problems of laminated plates and shells is studied. The theory developed is based on the kinematic hypotheses which are derived using iterative technique. Dynamic effects, such as forces of inertia and the direct influence of external loading on the stress and strain components are included at the initial stage of derivation where kinematic hypotheses are formulated. The proposed theory and solution methods provide a basis for theoretical and applied studies in the field of dynamics and statics of the laminated shells, plates and their systems, particularly for investigation of dynamic processes related to the highest vibration forms and wave propagation, for optimal design etc. Geometrically nonlinear higher-order theory of laminated plates and shells with shear and normal deformation is derived. The theory takes into account both transverse shear and normal deformations. The number of numerical results are obtained based on the nonlinear theory developed. The results illustrate importance of the influence of geometrical nonlinearity, especially, at high levels of loading and in case when the laminae exhibit significant differences in their elastic properties. / Thesis (Ph.D.)-University of Natal, Durban, 1995.
42

Characterisation and mechanical properties of bulk nanostrictured Al-based composites for high temperature applications

Pedrazzini, Stella January 2014 (has links)
Rapidly solidified nanoquasicrystalline Al<sub>93</sub>Fe<sub>3</sub>Cr<sub>2</sub>Ti<sub>2</sub> at% alloy has previously shown outstanding mechanical performance and microstructural stability up to elevated temperatures. Despite this, no in-depth study had previously been performed assessing the active strengthening mechanisms, the long term microstructural stability and the effect of plastic deformation at elevated temperature to simulate the production methods utilised for engineering applications. The current project analysed eight bars consisting of a nanoquasicrystalline Al<sub>93</sub>Fe<sub>3</sub>Cr<sub>2</sub>Ti<sub>2</sub> at% alloy matrix with varying amounts of pure Al fibres, produced through gas atomisation and warm extrusion. Microstructural characterisation and thermal analysis of the as-atomized powder was carried out to assess whether microstructural changed were likely to occur at the extrusion temperature. A microstructure made primarily of nanometre-sized icosahedral particles in an FCC-Al matrix was observed through a combination of SEM, TEM (and CBDP), EDX, XRD. Thermal analysis of the powders performed by DSC showed that no change was expected to occur at the extrusion temperature. Five bars were extruded during the course of this project: one bar of pure Al-Fe-Cr-Ti alloy, two composite bars with 10 vol% added pure Al and two bars with 20 vol% added Al. Three more bars were received from a previous project and analysed. Warm extrusion caused the powder particles to become well bonded and elongated in the extrusion direction introducing a preferred orientation in the FCC-Al grains. A bimodal distribution of grain size was observed after extrusion. Several low angle (5-15 &deg;) grain boundaries were also identified by EBSD along the extrusion direction. No obvious change in size or shape was observed by TEM in the icosahedral phase (a bimodal distribution of hard, incoherent precipitates was observed after extrusion), or any change in the amount of solutes in solid solution in the Al matrix. Mechanical properties at room temperature were tested by Vickers microhardness, quasi-static tensile tests, dynamic tensile tests and dynamic compression tests. A theoretical model correlating the microstructures observed with the various active strengthening mechanisms was applied in order to predict an estimate of the yield strength of the material produced. It was found that the strength of the Al<sub>93</sub>Fe<sub>3</sub>Cr<sub>2</sub>Ti<sub>2</sub> alloy came primarily from a combination of the effect of the hard, incoherent nanoparticles, the small grain size and work hardening. The fibre addition to this alloy caused a linear decrease in mechanical strength with increasing vol% pure Al. This work represents the first quantitative estimate of which strengthening mechanisms are active and how much they influence the mechanical strength of Al<sub>93</sub>Fe<sub>3</sub>Cr<sub>2</sub>Ti<sub>2</sub> alloy and composites. An understanding of the yield strength is essential as engineering components would only be safe to use within the elastic region. To investigate the thermal stability of the alloy and composites, thermal analyses involving DSC and long heat treatments (up to a maximum of 1000 hours) were performed at various temperatures along with microstructural characterisation by XRD, SEM and TEM and microhardness tests. No microstructural change was detected, however a 2-5% decrease in microhardness was observed. Compression tests were performed across a range of temperatures and strain rates to simulate the behaviour of these composites under typical conditions necessary to process them into useful engineering components. Phase changes occurring during plastic deformation at high temperature were investigated by XRD. The measured yield strength at 350 &deg;C was over 3x that of high strength 7075 T6 Al alloy showing outstanding thermal stability and mechanical performance. However, the microstructure was shown by XRD to undergo a phase transformation which resulted in the decomposition of the icosahedral phase at 500 &deg;C into more stable intermetallic phases. Serrated flow was also observed in some of the tests. The high temperature compressive data was then used for the first time in a semi-quantitative analysis to determine which species in solid solution (Fe, Cr or Ti) was likely to cause the serrations. A dynamic strain ageing model, which calculates the diffusion coefficients at the minimum in ductility and strain rate sensitivity, suggested that the Ti in solid solution in the matrix could be the most likely candidate.
43

Durability of carbon fiber/vinylester composites subjected to marine environments and electrochemical interactions

Unknown Date (has links)
Degradation of the Carbon Fiber/Vinylester (CF/VE) polymer matrix composites due to different electrochemical interactions when exposed to seawater or at high temperature had been experimentally investigated. Water uptake behavior of composite specimen was examined based on weight gain measurement. Three point bending test was performed to quantify the mechanical degradation of composite immersed in seawater with different environmental and electrochemical interactions. Finally, Electrochemical Impedance Spectroscopy (EIS) was used to better understanding of the degradation process in CF/VE composite produced by interactions between electrochemical and different environmental conditions. A detailed equivalent circuit analysis by using EIS spectra is also presented in an attempt to elucidate the degradation phenomenon in composites. / by Md Hasnine. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
44

A study of the effects of nanoparticle modification on the thermal, mechanical and hygrothermal performance of carbon/vinyl ester compounds

Unknown Date (has links)
Enhancement of mechanical, thermal and hygrothermal properties of carbon fiber/vinyl ester (CFVE) composites through nanoparticle reinforcement has been investigated. CFVE composites are becoming more and more attractive for marine applications due to two reasons : high specific strength and modulus of carbon fiber and low vulnerability of vinyl ester resin to sea water. However, the problem with this composite system is that the fiber matrix (F/M) interface is inherently weak. This leads to poor mechanical properties and fast ingress of water at the interface further deteriorating the properties. This investigation attempts to address these deficiencies by inclusion of nanoparticles in CFVE composites. Three routes of nanoparticle reinforcement have been considered : nanoparticle coating of the carbon fiber, dispersion of nanoparticles in the vinyl ester matrix, and nanoparticle modification of both the fiber and the matrix. Flexural, short beam shear and tensile testing was conducted after exposure to dry and wet environments. Differential scanning calorimetry and dynamic mechanical analysis were conducted as well. Mechanical and thermal tests show that single inclusion of nanoparticles on the fiber or in the matrix increases carbon/vinyl ester composite properties by 11-35%. However, when both fiber and matrix were modified with nanoparticles, there was a loss of properties. / by Felicia M. Powell. / Thesis (Ph.D.)--Florida Atlantic University, 2012. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2012. Mode of access: World Wide Web.
45

Effects of Carbon Nanotube (CNT) Dispersion and Interface Condition on Thermo-Mechanical Behavior of CNT-Reinforced Vinyl Ester

Unknown Date (has links)
In fabrication of nanoparticle-reinforced polymers, two critical factors need to be taken into account to control properties of the final product; nanoparticle dispersion/distribution in the matrix; and interfacial interactions between nanoparticles and their surrounding matrix. The focus of this thesis was to examine the role of these two factors through experimental methodologies and molecular-level simulations. Carbon nanotubes (CNTs) and vinyl ester (VE) resin were used as nanoparticles and matrix, respectively. In a parametric study, a series of CNT/VE nanocomposites with different CNT dispersion conditions were fabricated using the ultrasonication mixing method. Thermomechanical properties of nanocomposites and quality of CNT dispersion were evaluated. By correlation between nanocomposite behavior and CNT dispersion, a thermomechanical model was suggested; at a certain threshold level of sonication energy, CNT dispersion would be optimal and result in maximum enhancement in properties. This threshold energy level is also related to particle concentration. Sonication above this threshold level, leads to destruction of nanotubes and renders a negative effect on the properties of nanocomposites. In an attempt to examine the interface condition, a novel process was developed to modify CNT surface with polyhedral oligomeric silsesquioxane (POSS). In this process, a chemical reaction was allowed to occur between CNTs and POSS in the presence of an effective catalyst. The functionalized CNTs were characterized using TEM, SEM-EDS, AFM, TGA, FTIR and Raman spectroscopy techniques. Formation of amide bonds between POSS and nanotubes was established and verified. Surface modification of CNTs with POSS resulted in significant improvement in nanotube dispersion. In-depth SEM analysis revealed formation of a 3D network of well-dispersed CNTs with POSS connections to the polymer. In parallel, molecular dynamics simulation of CNT-POSS/VE system showed an effective load transfer from polymer chains to the CNT due to POSS linkages at the interface. The rigid and flexible network of CNTs is found to be responsible for enhancement in elastic modulus, strength, fracture toughness and glass transition temperature (Tg) of the final nanocomposites. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
46

Determination of the tensile strength of the fiber/matrix interface for glass/epoxy & carbon/vinylester

Unknown Date (has links)
The tensile strength of the fiber/matrix interface was determined through the development of an innovativetest procedure.Aminiature tensile coupon with a through-thickness oriented, embedded single fiberwas designed. Tensile testing was conducted ina scanning electron microscope (SEM)while the failure process could be observed.Finite element stress analysis was conducted to determine the state of stressat the fiber/matrix interface in the tensile loaded specimen, and the strength of the interface.Test specimensconsistingof dry E-glass/epoxy and dry and seawater saturatedcarbon/vinylester510Awere preparedand tested.The load at the onset of debondingwascombined withthe radial stressdistributionnear thefree surface of the specimento reducethe interfacial tensile strength. For glass/epoxy, was 36.7±8.8MPa.For the dryand seawater saturated carbon/vinylester specimensthetensilestrengthsof the interface were 23.0±6.6 and 25.2±4.1MPa, respectively.The difference is not significant. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
47

Effect of Processing Temperature on the Properties of Nanophase Fe-substituted Hydroxypatite

Unknown Date (has links)
The effect of processing temperature on the crystal structure properties of the Fe-substituted Hydroxyapatite (Fe-HAp) was studied by using the Rietveld refinement method of powder x-ray (XRD) and neutron diffraction (NPD) patterns. Superconducting QUantum Interference Device (SQUID) magnetometry, transmission electron microscopy (TEM) and x-ray fluorescence spectroscopy (XRF) were used to study the magnetic properties, particle morphology and chemical composition of the prepared samples. Two sets of samples of chemical formula Ca5-xFex(PO4)3OH were prepared with x = 0, 0.05, 0.1, 0.2 and 0.3 by using processing temperatures of 37°C and 80°C, following a two-step co-precipitation method. A single phase HAp was identified in samples with x = 0 and 0.05. Processing temperature affects the type and percentage of secondary phases: hematite was detected in samples prepared at 37°C with x ≥ 0.1, hematite and maghemite were detected in samples prepared at 80°C with x = 0.2 and 0.3. Rietveld refinements of NPD and XRD patterns showed that the a lattice constants are greater in Fe-substituted samples prepared at 37°C, whereas the c lattice constants are greater in the 80°C samples for x ≥ 0.05. Fe preferentially substitutes at the Ca2 site in the 80°C samples, whereas Ca1 is the preferred substitution site in the 37°C samples. Fe substitution results to a decrease of the lattice constants at both preparation temperatures. The ratios Fe/(Fe + Ca) of the refined atomic fractions of the samples prepared at 80°C are greater than those of the 37°C samples. Further, more secondary phases form in samples prepared at 37°C compared to 80°C samples. The magnetic measurements reveal that pure HAp is diamagnetic, whereas samples with x = 0.05 and 0.1 are paramagnetic. Samples with x = 0.3 showed superparamagnetic behavior based on ZFC and FC measurements. Similar hysteresis loops in samples x = 0.2 and 0.3 indicate that the samples with x = 0.2 may show superparamagnetic properties. For x = 0.2 and 0.3, the samples prepared at 80°C showed higher magnetization compared to the 37°C samples, because of the maghemite secondary phase. Based on the TEM images, Fe substituted HAp nanoparticles prepared at 37°C are mainly spherically shaped, and the 80°C particles are mainly elongated. Increase of the Fe concentration favors formation of elongated particles and larger spherical particles. The XRF measurements confirm the Fe for Ca substitution in the HAp structure based on the decrease of the Ca/P and the increase of the Fe/(Fe + Ca) atomic ratios with the Fe concentration. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
48

Characterizing the structure-function relationships of the mouse cervix in pregnancy: Towards the development of a hormone-mediated material model for cervical remodeling.

Yoshida, Kyoko January 2016 (has links)
The timely remodeling of the cervix from a mechanical barrier into a soft, compliant structure, which dilates in response to uterine contractions is crucial for the safe delivery for a term baby. A cervix which softens too early in the pregnancy is implicated in spontaneous preterm births (sPTB). Currently, 15 million babies are affected by PTB annually, early diagnosis is difficult, and 95% of all PTBs are unmanageable by available therapies. These statistics highlight the need to better understand the biological processes involved in cervical remodeling and its downstream effects on material properties. To address this need, we propose the development of a hormone-mediated material constitutive model for the cervix where steroid hormone actions on key tissue constituents are incorporated into a microstructure-inspired material model. As the first steps towards the development of this model, the main objective of this dissertation work is to understand the key structure-mechanical function relationships involved in pregnancy. To understand cervical material property changes, the equilibrium swelling and tensile response of the nonpregnant and pregnant mouse cervix is measured, a porous fiber composite material model is proposed, and the model is fit to the mechanical data then validated. To better understand key tissue constituents involved, the evolution of intermolecular collagen crosslinks is determined in normal pregnancy and the role of the small proteoglycan, decorin, and elastic fiber structure on cervical mechanical function is investigated. The results presented here demonstrate that a porous, continuously distributed fiber composite model captures the three-dimensional mechanical properties of the nonpregnant and pregnant cervix. The material property changes of the cervix in a 19-day mouse gestation is described as a four order of magnitude decrease in the parameter associated with the fiber stiffness. We provide quantitative evidence to demonstrate the role of collagen crosslinks on tissue softening in the first 15 days, but not in the latter stages of a mouse pregnancy. A role of elastic fiber structure on cervical mechanical function is demonstrated, as well as distinct roles of estrogen on elastic fiber structure and progesterone on collagen fibril structure. Lastly, an analysis of the time-dependent response of cervices from nonpregnant, normal pregnant, and induced PTB mice are presented. This dissertation concludes by reviewing the presented data within the context of the proposed framework to suggest future directions towards its development.
49

Nanostructured Platforms for Biological Study

Hu, Junqiang January 2016 (has links)
This thesis focuses on the study of nanotechnology and its applications in immunology and mechanosensing using micro- and nano-scale topographies, such as gratings, grids, and pillar substrates. In the past five years, we have developed three types of platforms and explored the influence of nano-patterned substrates on cell morphology, proliferation, protein secretion, and mechanosensing. I will introduce the three generations of Integrated Mechanobiology Platform (IMP) for T cell study, including the fabrication process of each generation of IMP, their advantages and disadvantages, and the comparison with existing High Throughput Screening System (HTSS). For the applications of IMP, I will focus on grating and grid topographies with IMP generation 3 format, and study how these nano-patterned substrates affect T cell morphology, expansion, cytokine secretion, drug-topography combination effects on T cells and long-term expansion for adoptive immunotherapy. I will demonstrate how IMP enables such studies in a high throughput manner. I also will discuss how Multiple Stiffness Pillar Platform (MSPP) facilitates the study of mechanosensing in cells spanning across different rigidities. First, I will talk about how MSPP is different from existing dual stiffness platforms. Differences include flexibility in distribution of different rigidities, consistency in pillar dimensions and ease of controlling the stiffness fold increase. In the sections of MSPP fabrication and characterization, I will focus on measurements of stiffness change and surface chemistry uniformity. I will then discuss the Mouse Embryonic Fibroblast (MEF) mechanosensing study on dual stiffness pillar substrates, including the preferential localization of rigidity sensing associated proteins (myosin IIA, phosph-myosin, paxillin, and p130CAS), MEFs actomyosin network building, and adhesion formation. These studies revealed previously undiscovered results in MEF mechanosensing, and demonstrate the great potential of MSPP in this research discipline. In the last part of this thesis, I will present on the mass production of thermoplastic nanopatterned molds. The demonstrated technology can produce large batches of nanostructured molds with decreased fabrication time and expense. In this chapter, I will discuss the necessity of developing such a technology and platform, as well as the design, fabrication, and characterization of the thermoplastic nano-patterned molds.
50

A Coupled Viscoelastic and Damage Approach for Solids with Applications to Ice and Asphalt

Londono Lozano, Juan Guillermo January 2017 (has links)
As new materials are developed and further concerns on green alternatives and serviceability arise, understanding material behavior during the entire span of their lifetime becomes crucial to engineering applications. Moreover, many problems display a significant dependence to time and loading effects which, by varying across multiple time scales, require material models that incorporate these effects into any valid characterization and prediction. This dissertation aims at proposing a new approach to analyze and predict viscoelastic materials that deteriorate during multiple loading conditions. The model is constructed from mechanical and mathematical basis while satisfying physical laws. In this work, the proposed constitutive law is used for the analysis of the mechanical properties of ice. The mechanical behavior, biaxial envelop and multiple loading types demonstrate the validity of the model when compared to experimental results and other ice models available in the literature. A rigorous calibration scheme for the viscoelastic and damage parameters is also presented. Moreover, as material deterioration or damage is modeled in standard Finite Elements software, it is commonly known that computational results can be dependent on the spatial discretization or mesh. That is, damage zone and energy dissipation are dependent on the selection of the mesh yielding a disappearing damage zone and energy dissipation upon refinement. This non-physical behavior is corrected by the novel regularization approach proposed in this document, which introduces a length scale of the material and produces results that are no longer sensitive to the mesh selection. The nonlocal damage model is finally used in the analysis of asphalt concrete viscoelastic behavior and cracking prediction. As presented in the ice case, a rigorous calibration approach is presented first followed by the validation to experimental data available in the literature under different loading conditions. The coupled viscoelastic and damage model is compared to other model and their Finite Elements implementations are highlighted in terms of computational efficiency. A nonlinear coupled system for solving this problem is programmed as a User Element in a commercial Finite Element analysis software.

Page generated in 0.1197 seconds