Spelling suggestions: "subject:"maternal transfer"" "subject:"paternal transfer""
1 |
Reproductive and Developmental Effects of Elevated Maternal Dietary Selenium in the Model Amphibian Xenopus laevis2016 April 1900 (has links)
Selenium (Se) is a contaminant of potential concern in aquatic systems due to its efficient incorporation into food webs, potential for bioaccumulation at higher trophic levels, and role as a developmental toxicant in oviparous vertebrates. While the presence of embryonic/larval deformities due to in ovo Se exposure is considered the most sensitive toxicological endpoint, elevated levels of dietary Se have also been associated with alterations to bioenergetic and hormonal status of adult female fishes, which consequently could lead to diminished fitness and impaired reproduction. Adverse reproductive effects in fishes have been the primary focus of Se research thus far, while studies focusing on Se toxicity in amphibians in any regard are severely lacking. The US EPA has recently proposed a new set of criteria for the protection of freshwater aquatic life with regards to acceptable Se tissue threshold levels; however, these values were generated based on effects observed in fishes with negligible existent data on amphibians to assist in this process. Thus, the overall goal of this thesis research was to characterize the reproductive and developmental effects of elevated dietary Se exposure in Xenopus laevis, in order to provide a foundation for amphibian related Se research that may assist in establishing effective regulatory guidelines that protect this highly vulnerable and ecologically valuable taxon.
The research presented in this thesis was performed as one large generational bioassay with the analysis of experimental variables divided into three sections in order to evaluate the effects of elevated in ovo Se exposure via maternal transfer on early and late stages of larval development in addition to the overall fitness of adult X. laevis females after a dietary exposure. Adult X. laevis females were fed a diet augmented with L-selenomethionine (SeMet) for 68 days after which they were bred with untreated males. The resultant embryos were incubated up to 5 days post fertilization (dpf) to determine fertilization success, hatchability, mortality and frequency/severity of malformations. Subsamples of 5 dpf tadpoles were selected and raised to completion of metamorphosis for evaluation of mortality, growth and maturation rate. In addition, tissue and blood samples as well as morphometric indices were collected from X. laevis females, upon completion of the exposure period and subsequent breeding, to ascertain Se tissue distribution, triglyceride and glycogen levels, cortisol concentrations and the overall health status of SeMet-treated females.
Within the data gathered throughout this research, a foundation of knowledge characterizing Se toxicity in amphibians was established along with the development of an early life stage toxicity threshold for the frequency of teratogenic abnormalities in X. laevis. The bioenergetic and stress status in addition to the overall body condition of adult females after a 68 day dietary exposure showed no significant differences among treatment groups. The concentrations of Se measured in the ovary, egg, liver and muscle samples increased with female dietary Se levels with strong positive relationships between egg Se concentrations and the other three tissues being illustrated. Elevated in ovo Se exposure had no biologically significant effect on fertilization success, hatchability or mortality within the first 5 dpf; however, the frequency and severity of morphological abnormalities was significantly greater in tadpoles from the highest dose group, with eye lens abnormalities most prominently observed. Late stage larval survival and growth was unaffected by in ovo Se exposure; however, the distribution of developmental stages observed at the set time point when 50% of tadpoles completed metamorphosis showed a larger portion of tadpoles at earlier stages of development in the highest dose group despite no overall change in time to metamorphosis. The results of this thesis research in its entirety suggest that amphibians, as represented by X. laevis, are potentially more tolerant to elevated in ovo and dietary Se exposures than other oviparous vertebrates studied to date; however, without sufficient data for comparison it is unknown whether X. laevis is a tolerant, average or sensitive species among amphibians.
|
2 |
Mercury Bioaccumulation and Adverse Reproductive Effects in Snapping Turtles Inhabiting a Historically Contaminated RiverHopkins, Brittney Cole 30 May 2012 (has links)
Mercury (Hg) is a global pollutant that has received much attention due to its ability to bioaccumulate, biomagnify, and maternally transfers in humans and wildlife. In vertebrates, exposure to Hg can impair growth, alter behavior and morphology, decrease survival, and reduce reproductive success. Unfortunately, most ecotoxicology studies euthanize animals to quantify the concentrations of Hg bioaccumulation and in doing so eliminate the ability to relate Hg accumulation to observed effects. The development of non-destructive sampling techniques is a critical step for sustainable monitoring of Hg bioaccumulation and associated effects because it eliminates adult harvest, enables repeated sampling of the same individual over time, and allows the collection of larger sample sizes. My research aimed to develop and validate non-destructive sampling techniques for assessing Hg bioaccumulation, maternal transfer, and consumption risks in a long-lived aquatic omnivore, the common snapping turtle (Chelydra serpentina). I collected blood, nail, muscle, and egg tissues from turtles inhabiting an Hg contaminated gradient at a historically contaminated river, the South River, located in central Virginia. In my first chapter, I developed mathematical models describing relationships between the four tissues sampled and in doing so, described important demographic, spatial, and temporal factors that influence Hg bioaccumulation in turtles that may be important for ecological risk assessment and consumption. Additionally, I found that my mathematical models were applicable to other Hg contaminated locations in Virginia. In my second chapter, I examined the effects Hg bioaccumulation and maternal transfer has on turtle reproduction. I collected and incubated eggs from gravid females from reference and contaminated sites and quantified embryonic morality, infertility, and hatching success of each clutch, and assessed all hatchlings and dead embryos for gross morphological malformations. I found that Hg exposure negatively influenced hatching success through increased egg infertility and embryonic mortality. Taken together, my results are applicable to a wide array of systems where biomonitoring and assessing the ecological and consumption risk of contamination in turtles needs to be accomplished in a sustainable and conservation-minded fashion. / Master of Science
|
3 |
Individual and Interactive Effects of Maternally- and Trophically-Derived Mercury on Early Amphibian DevelopmentBergeron, Christine Marie 30 November 2011 (has links)
Mercury (Hg) is an important environmental contaminant due to its global distribution, tendency to bioaccumulate, and toxicity to wildlife. However, Hg has received little attention in amphibians compared to other vertebrates, despite the fact that amphibian population declines have been documented worldwide and environmental contaminants are believed to contribute to some declines. During my dissertation research, I used a pluralistic approach which combined field studies and manipulative laboratory and mesocosm experiments to examine the bioaccumulation and ecological effects of environmentally relevant Hg exposure routes acting at various early life stages in amphibians. By collecting amphibians in the field at the Hg-contaminated South River, VA, I confirmed that amphibians exhibiting different life histories and occupying different ecological niches (Plethodon cinereus, Eurycea bislineata, and Bufo americanus) can bioaccumulate sufficient levels of Hg to warrant concern (Chapter 2) and female Bufo americanus transfer accumulated Hg to their eggs (Chapter 3). Maternal transfer of contaminants is a parental effect which typically has negative consequences for offspring because early development is a critical organizational period in the ontogeny of vertebrates. Through laboratory observations and mesocosm experiments, I examined the short and long-term effects of maternal contaminant exposure on offspring, and found the negative effects of maternal Hg exposure manifested either immediately at the embryonic stage or later during the larval stage, depending on the year in which the study was conducted (Chapters 4 and 5). Lastly, using a factorial laboratory experiment, I examined whether the latent effects of maternal transfer of contaminants manifests differently depending on the environment in which offspring develop, and found both maternal and dietary Hg exposure independently produced negative, but different, sublethal effects on larval development. Most importantly, maternal exposure to Hg combined with high dietary Hg exposure later in ontogeny had a lethal effect in larvae (Chapter 6). This study is one of the first to demonstrate that the latent effects of maternally transferred contaminants may be exacerbated by further exposure later in ontogeny, findings that may have important implications for both wildlife and human health. / Ph. D.
|
4 |
BIOACCUMULATION, TROPHIC MAGNIFICATION, AND MATERNAL TRANSFER OF LEGACY AND ALTERNATIVE FLAME RETARDANTS IN SHARKS OF THE NORTHWESTERN ATLANTIC OCEANMarler, Hillary Rose 01 May 2019 (has links) (PDF)
Flame retardants (FRs) are widely used in a variety of consumer products, including electronics, textiles, vehicles, furniture foams, and children’s toys. Many of these chemicals are halogenated compounds that are persistent in the environment over long periods of time and are known or suspected endocrine disruptors. As a result, FRs may have a variety of negative health effects on humans and wildlife. Following the discontinuation of commercial polybrominated diphenyl ether (PBDE) mixtures, a variety of alternative FRs have been developed and employed. In comparison with legacy FRs, relatively little is known about the ability of these emerging FRs to bioaccumulate and biomagnify in various systems. The primary objective of my dissertation was to better understand the contamination status of both legacy and emerging FR in the biota of the northwestern Atlantic Specifically my objectives were to (1) identify and quantify legacy and emerging FRs in high trophic level predator species (sharks) of the northwestern Atlantic, (2) determine Tropic Magnification Factors (TMFs) for legacy and emerging FRs within the same food web, and (3) evaluate the maternal transfer of a variety of brominated and chlorinated FRs in viviparous Atlantic sharks.
|
5 |
Yolk sac infections in broiler chicks: studies on Escherichia coli, chick acquired immunity, and barn microbiologyUlmer Franco, Ana M Unknown Date
No description available.
|
6 |
Generational Effects of Bisphenol A on Growth and Stress Performance in Rainbow TroutBirceanu, Oana 25 June 2015 (has links)
The aquatic environment is severely impacted by xenobiotics that are released due to anthropogenic activities, threatening ecosystem health. Some of these contaminants accumulate in lipophilic fish tissues and are maternally transferred to developing offspring, affecting their growth and performance. However, knowledge about the long-term and generational impacts associated with maternal transfer of contaminants is limited in fish. In this thesis, the hypothesis tested was that maternal transfer of bisphenol A (BPA) leads to disruption in the developmental programing of growth and stress axes functioning in rainbow trout (Oncorhynchus mykiss), and that these changes are passed on to the next generation. This was tested by exposing oocytes to either control (vehicle; <0.01% ethanol) 0.3, 3.0, and 30.0 mg l-1 BPA in ovarian fluid for 3 h, prior to fertilization, to mimic maternal transfer. This led to the accumulation of 0, 0.8, 4.4 and 41.3 ng BPA embryo-1. Oocytes were fertilized with milt from clean males, and offspring growth, development and stress performances were assessed in a clean environment for a year (F1 generation). For F2 generation, oocytes collected from F1 females, raised from the different BPA accumulated eggs, were fertilized with milt from clean males and raised in a clean environment for one year as described for F1 generation.
The accumulated BPA in eggs was quickly cleared and it was no longer detected in the F1 embryos at hatch. BPA exposure reduced specific growth rate and increased food conversion ratio in larvae reared from BPA-laden oocytes. Moreover, BPA-exposed fish had an altered cortisol developmental profile and a delay in stress axis maturation. In addition, the mRNA abundance of genes involved in somatotropic [insulin-like growth factor (IGF) -1; IGF-2; IGF receptor b (IGF-1rb)] and stress axes functioning [steroidogenic acute regulatory protein (StAR); cytochrome P450 side chain cleavage (P450scc)] were altered. Also, changes in thyroid signaling [thyroid receptor (TR) mRNA levels] and cortisol signaling [glucocorticoid receptor (GR) protein expression] were disrupted temporally during development. These results demonstrate that BPA accumulation in eggs, mimicking maternal transfer, impacts growth and development, and delays stress axis maturation via non-reproductive endocrine disrupting routes in trout.
Some of the BPA changes seen in F1 generation also persisted in the F2 generation. For instance, ancestral exposure to BPA led to reduced growth and whole body glycogen content prior to feeding in the F2 fish. The developmental transcript profile of growth hormone-1and -2, IGF-1 and -2 and IGF-1rb, along with whole body cortisol levels were impacted by ancestral exposure to BPA. Moreover, a delay in cortisol dynamics post-stress was noted in the F2 fish of BPA exposure lineage. Our results show that ancestral exposure to BPA leads to effects on growth and stress performance in rainbow trout, but the mechanism is not known.
To further investigate the long-term effect of BPA accumulation in eggs on stress performances, F1 and F2 juvenile fish were subjected to an acute stressor. Also, head kidney tissues from these juvenile fish were subjected to adrenocorticotrophic hormone (ACTH) stimulation in vitro to assess cortisol production capacity. BPA accumulation in eggs led to a reduced acute handling stressor-induced plasma cortisol response in trout from the F1 and F2 (only high BPA group) generations. Also, BPA exposure had a pronounced impact on acute handling stressor-mediated plasma glucose (only F2 generation) and lactate levels, indicative of a metabolic disturbance. BPA exposure (only the 4.4 ng group) did affect unstimulated but not stimulated [ACTH or 8-bromo-cyclic AMP (8-B-cAMP)] cortisol production from head kidney slices of juvenile fish from F1 generation. In the F2 generation, there was an increase in ACTH-stimulated cortisol production only from the high BPA-exposed group. Overall, BPA in eggs disrupts long-term cortisol and metabolic stress performances in rainbow trout. While the impaired plasma cortisol stress performance was dose-related in the F1, the effect was apparent only for high BPA group in the F2 generation, suggesting that the generational effects on cortisol stress axis functioning may be concentration-dependent.
A metabolomics approach further confirmed multigenerational effects associated with BPA accumulation in eggs. Analysis of the metabolome profile at hatch and prior to first feed, using gas chromatography-time of flight-mass spectrometry (GC-TOF-MS), revealed a BPA-mediated metabolic disruption, including changes in pathways involved in carbohydrate, lipid and amino sugar metabolism, and amino acid metabolism and synthesis. Pathways involved in citric acid cycle and alanine, aspartate and glutamate metabolism were altered in both generations, suggesting that these pathways have the potential to be markers with predictive value for multigenerational effects of BPA in fish. Altogether, the study provides novel insights on the impact of BPA on rainbow trout metabolome at hatch and first feed. The results suggest that pathways involved in energy metabolism are targets for BPA impact and should be investigated as potential markers for BPA toxicity.
Overall, BPA accumulation in oocytes induces long-term delays in growth and stress axis maturation in F1 generations fish, and these effects persist in the F2 generation. The developmental profiles of key genes of the somatotropic and HPI axes were altered by BPA, along with whole body composition, suggesting that BPA exposure leads to a metabolic disturbance in fish, resulting in reduced growth. Additionally, the altered plasma cortisol response to acute stress in F1 and F2 juveniles provides evidence for multigenerational effects of BPA on stress axis functioning. The current study proposes that BPA-induced epigenetic modifications during early development may be playing a key role in the generational effects on growth and stress axes disruption in trout. The finding that the growth and developmental changes to BPA exposure also corresponds with endocrine and metabolome changes in multiple generations in trout is novel, and underscores the necessity to develop new risk assessments tools for chemicals that are maternally transferred in fish.
|
7 |
Polybrominated dibenzo-p-dioxins : Natural formation mechanisms and biota retention, maternal transfer, and effectsArnoldsson, Kristina January 2012 (has links)
Polybrominated dibenzo-p-dioxins (PBDD) and dibenzofurans (PBDF) are a group of compounds of emerging interest as potential environmental stressors. Their structures as well as toxic responses are similar to the highly characterized toxicants polychlorinated dibenzo-p-dioxins. High levels of PBDDs have been found in algae, shellfish, and fish, also from remote areas in theBaltic Sea. This thesis presents studies on PBDD behavior in fish and offspring, and natural formation of PBDDs from naturally abundant phenolic precursors. The uptake, elimination, and maternal transfer of mono- to tetraBDD/Fs were investigated in an exposure study reported in Paper I. The effects of PBDDs in fish were examined in a dose-response study (Paper II). It was shown that fish can assimilate PBDD/Fs from their feed, although non-laterally substituted congeners were rapidly eliminated. Laterally substituted congeners were retained as was congeners without vicinal hydrogens to some extent. PBDD/Fs were transferred to eggs, and congeners that were rapidly eliminated in fish showed a higher transfer ratio to eggs. Exposure to the laterally substituted 2,3,7,8-TeBDD had significant effects on the health, gene expression and several reproduction end-points of zebrafish, even at the lowest dose applied. The geographical and temporal variations of PBDD in biota samples from the Baltic Seasuggest biogenic rather than anthropogenic origin. In Paper III, bromoperoxidase-mediated coupling of 2,4,6-tribromophenol yielded several PBDD congeners, some formed after rearrangement. The overall yield was low, but significantly higher at low temperature, and the product profile obtained was similar to congener profiles found in biota from the Swedish West Coast. In Paper IV, photochemically induced cyclization of hydroxylated polybrominated diphenyl ethers under natural conditions produced PBDDs at percentage yield. Rearranged products were not detected, and some abundant congeners do not seem to be formed this way. However, the product profile obtained was similar to congener profiles found in biota from the Baltic Proper. Since the PBDD congeners found in biota have a high turn-over in fish, the exposure must be high and continuous to yield the PBDD levels measured in wild fish. Thus, PBDDs must presumably be formed by common precursors in general processes, such as via enzymatic oxidations, UV-initiated reactions or a combination of both. The presented pathways for formation of PBDDs are both likely sensitive to changes in climatic conditions.
|
8 |
Petit poisson deviendra grand? : évaluation du rôle de la contamination chimique dans le déclin des populations de perchaudes (Perca flavescens) du lac Saint-PierreKhadra, Mélissa 05 1900 (has links)
La qualité de l'eau du lac Saint-Pierre (LSP), le plus grand lac fluvial du fleuve Saint-Laurent, est notamment compromise par le déversement d’une mixture composée de métaux et de pesticides provenant des rejets des industries, des effluents municipaux et de l’exploitation des terres agricoles dans son bassin versant. Cette contamination est d'autant plus importante dans les zones du lac caractérisées par une végétation dense favorisant la rétention et la sédimentation de la matière en suspension. Or, ces herbiers aquatiques, qui occupent de vastes étendues du LSP, servent de frayère pour plusieurs poissons, dont la perchaude (Perca flavescens). Cette espèce est donc particulièrement affectée par la dégradation des habitats aquatiques du LSP. À la suite d’un déclin important de ses populations depuis la fin des années 1990 en raison de son important intérêt commercial et sportif, un moratoire de cinq ans sur la pêche de la perchaude a été imposé en 2012 et reconduit jusqu’en 2022, puisque l’incapacité de rétablissement des populations de perchaudes semble persister. La présente étude vise à évaluer l'hypothèse que cette incapacité de rétablissement, qui se reflète par un recrutement déficient, soit en partie attribuable à l'impact de la contamination chimique sur la reproduction, soit par des effets toxiques potentiels sur les femelles ovigères, sur les œufs ou sur les jeunes larves pendant les premiers mois.
Dans un premier temps, nous avons évalué l’hypothèse que le glyphosate, herbicide à large spectre et ingrédient actif de la formulation Roundup®, ait un impact indirect sur les jeunes perchaudes en décimant les communautés de biofilms périphytiques, source d’alimentation des invertébrés dont se nourrissent les jeunes larves. Cette suite d’effets contribuerait à l’accroissement de la mortalité hivernale des jeunes de l’année, due à une insuffisance de ressources énergétiques. Or, nos résultats démontrent que peu importe l’âge, et par le fait même l’épaisseur des biofilms, le glyphosate, en concentrations environnementales réalistes, ne semble pas impacter négativement la composition des communautés ou le métabolisme de la chlorophylle des biofilms. Seul l’âge (2 mois, 1 an, 20 ans) de ces derniers semblait en effet influencer la composition taxonomique des communautés. Nous avons cependant observé une augmentation de l’abondance relative d’Anabaena, un taxon de cyanobactérie toxique qui possède une forme résistante rare de l’enzyme EPSPS, cible principale du mode d’action du glyphosate. Cette étude contribue à l’avancement des connaissances sur les effets de l’herbicide le plus utilisé à l’échelle mondiale, actuellement au cœur de préoccupations d’intérêt international.
Nous avons également évalué le potentiel de toxicité associé au transfert maternel du mercure et du sélénium chez la perchaude à l’aide de techniques de fractionnement subcellulaire. Le mercure est un contaminant d’intérêt en raison de son omniprésence dans l’environnement ainsi que de ses effets néfastes sur la reproduction des poissons à de très faibles concentrations. Il a également été démontré que des ratios molaires Se:Hg supérieurs à 1 atténuaient les effet néfastes du mercure. Nos résultats démontrent une évidence de transfert maternel de la femelle à ses œufs, mais également aux mitochondries gonadiques, principales composantes sensibles de la cellule. Le transfert maternel représentant la source d’exposition aux contaminants la plus importante pour les embryons, nos observations pourraient contribuer à expliquer le recrutement déficient des jeunes perchaudes au LSP. Nous avons également mesuré des ratios molaires Se:Hg systématiquement supérieurs à 1 dans les différentes fractions subcellulaires hépatiques et gonadiques, résultats novateurs qui laissent sous-entendre un effet protecteur du Se.
Puisque nous avons confirmé l’occurrence d’un transfert maternel du mercure, l’étape logique subséquente était d’évaluer la bioaccumulation de ce contaminant au sein des différents stades ontogéniques du cycle de vie de la perchaude. Les stades embryo-larvaires et juvéniles précoces sont en effet des phases particulièrement sensibles aux contaminants organiques et inorganiques. Nos résultats démontrent que les concentrations de MeHg décroissent suivant un patron ontogénique, avec les plus hautes concentrations mesurées chez les juvéniles et les plus basses dans les masses d’œufs. Nous avons également démontré que presque 100% du mercure était présent sous forme de MeHg, forme toxique et bioamplifiable, chez les larves et les juvéniles. Les ratios molaires Se:Hg étaient quant à eux systématiquement supérieurs à 1, résultats comblant d’importantes lacunes au niveau des effets antagonistes entre le mercure et le sélénium chez les poissons.
Les résultats découlant des présents travaux de recherche ont un impact important sur la science de l’écotoxicologie en raison de leur caractère novateur. Tout d’abord, nous avons contribué à l’avancement des connaissances sur l’impact de concentrations environnementales de glyphosate sur des biofilms d’âge très contrasté. Ensuite, nous avons, pour la première fois, utilisé des outils de fractionnement subcellulaire afin d’évaluer le potentiel de toxicité lié au transfert maternel du mercure. Enfin, nous rapportons les premières données liées à la bioaccumulation simultanée du mercure et du sélénium aux stades de vie clés du développement de la perchaude. La présente thèse s’avère ainsi nécessaire afin de contribuer au progrès du savoir sur le devenir de certains contaminants d’intérêt au sein des écosystèmes aquatiques. / Lake Saint Pierre (LSP) is the largest fluvial lake in the Saint Lawrence River. Water quality in LSP is heavily affected by inputs of nutrients and chemical pollution from tributaries which drain agricultural watersheds, from municipal effluents and from industrial discharges. This contamination is amplified in areas of LSP with dense vegetation because aquatic plants promote the retention and sedimentation of dissolved and particulate matter. Several fish species, including Yellow Perch (Perca flavescens), use these aquatic vegetation beds as their spawning grounds and are therefore particularly affected by the contamination of aquatic habitats in LSP. This study therefore tests the hypothesis that chemical contamination in Yellow Perch (YP) during their early life stages can help explain this species’ lack of resilience despite the implementation of a fishing moratorium in 2012. This moratorium was extended until 2022 since populations are still undergoing a recruitment failure and a decline in juvenile abundance populations.
The phosphonate herbicide glyphosate, which is the active ingredient in Roundup®, is currently the most widely used herbicide in the world. Glyphosate-based herbicides are sprayed on food and feed crops during cultivation and are thus subject to leaching to streams and rivers. In aquatic ecosystems, periphytic biofilms, or periphyton, are important primary producers and are often the first trophic level to be in contact with runoff waters. Thus, a trophic cascade could occur if these biofilms are negatively impacted by glyphosate, potentially leading to larval fish mortality due to resource limitation. Results showed that submersion period (2 months, 1 year, 20 years) was the only significant contributor to community structure. However, the glyphosate-resistant Cyanobacteria Anabaena was found to be favoured by the use of glyphosate. This freshwater Cyanobacteria commonly forms toxic blooms, raising concern regarding the use of glyphosate. For all colonization stages, and therefore different thicknesses, chlorophyll a did not show an unequivocal decline over time. This study therefore provides an interesting snapshot of the biological processes related to periphytic biofilms’ exposure to environmental concentrations of glyphosate. As this herbicide is currently of international concern, it is imperative to contribute to the advancement of knowledge about its effects.
Mercury (Hg) is a trace element of particular concern since it is ubiquitous in the environment and because its methylated form (MeHg) readily bioaccumulates and biomagnifies in food webs. This latter process leads to elevated Hg concentrations in fish and thus induces toxicity. Maternal transfer of bioaccumulated contaminants to offspring is a suggested mechanism of impaired reproductive success in fish. We therefore assessed the toxicity potential of Hg during maternal transfer in YP from LSP using a sub-cellular partitioning approach. Results showed a strong relationship between Hg bioaccumulation in the liver and Hg concentrations in gonadal mitochondria, which corroborates the potential toxicity of maternal transfer. As selenium is a well-studied Hg antagonist, we also measured the Se:Hg molar ratios in all subcellular fractions. We found that these ratios were systematically above 1, which is the suggested threshold for Hg toxicity alleviation through sequestration by Se.
Since early developmental stages in aquatic biota are particularly sensitive to Hg, and after confirming the evidence of maternal transfer, we subsequently addressed Hg bioaccumulation in all parts of YP life cycle. This study is the first of its kind to follow Hg and Se during YP ontogenetic development, from the gravid female to the juvenile. Results show that MeHg follow an ontogenetic pattern, with concentrations decreasing from the juveniles to egg masses. We also found that nearly 100% of THg was measured as the toxic form MeHg in larvae and juveniles. Lastly, Se:Hg molar ratios were systematically above 1, suggesting a potentially protective effect of Se on Hg bioaccumulation. This study will thus provide much needed information on the changes in bioaccumulation patterns during the most sensitive life cycle stages of this declining fish population.
Results issued from the present research have significant impact when it comes to the advancement of knowledge in Ecotoxicology due to their novel characteristics. First, we have contributed to the advancement of knowledge on the effects of environmental concentrations of glyphosate on highly age-contrasted biofilms. Also, it is the first time that subcellular partitioning techniques are used in order to assess the toxicity potential of mercury during maternal transfer. Finally, we provide the very first results on the simultaneous bioaccumulation of mercury and selenium in key life stages of YP development. Therefore, this thesis is of particular interest when aiming to assess the fate of certain contaminants of interest within aquatic ecosystems.
|
Page generated in 0.0871 seconds