• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 189
  • 35
  • 1
  • Tagged with
  • 431
  • 431
  • 156
  • 152
  • 150
  • 124
  • 108
  • 108
  • 79
  • 53
  • 52
  • 45
  • 43
  • 39
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Random effects models for ordinal data

Lee, Arier Chi-Lun January 2009 (has links)
One of the most frequently encountered types of data is where the response variables are measured on an ordinal scale. Although there have been substantial developments in the statistical techniques for the analysis of ordinal data, methods appropriate for repeatedly assessed ordinal data collected from field experiments are limited. A series of biennial field screening trials for evaluating cultivar resistance of potato to the disease, late blight, caused by the fungus Phytophthora infestans (Mont.) de Bary has been conducted by the New Zealand Institute of Crop and Food Research since 1983. In each trial, the progression of late blight was visually assessed several times during the planting season using a nine-point ordinal scale based on the percentage of necrotic tissues. As for many other agricultural field experiments, spatial differences between the experimental units is one of the major concerns in the analysis of data from the potato late blight trial. The aim of this thesis is to construct a statistical model which can be used to analyse the data collected from the series of potato late blight trials. We review existing methodologies for analysing ordinal data with mixed effects particularly those methods in the Bayesian framework. Using data collected from the potato late blight trials we develop a Bayesian hierarchical model for the analyses of repeatedly assessed ordinal scores with spatial effects, in particular the time dependence of the scores assessed on the same experimental units was modelled by a sigmoid logistic curve. Data collected from the potato late blight trials demonstrated the importance of spatial effects in agricultural field trials. These effects cannot be neglected when analysing such data. Although statistical methods can be refined to account for the complexity of the data, appropriate trial design still plays a central role in field experiments. / Accompanying dataset is at http://hdl.handle.net/2292/5240
372

Random effects models for ordinal data

Lee, Arier Chi-Lun January 2009 (has links)
One of the most frequently encountered types of data is where the response variables are measured on an ordinal scale. Although there have been substantial developments in the statistical techniques for the analysis of ordinal data, methods appropriate for repeatedly assessed ordinal data collected from field experiments are limited. A series of biennial field screening trials for evaluating cultivar resistance of potato to the disease, late blight, caused by the fungus Phytophthora infestans (Mont.) de Bary has been conducted by the New Zealand Institute of Crop and Food Research since 1983. In each trial, the progression of late blight was visually assessed several times during the planting season using a nine-point ordinal scale based on the percentage of necrotic tissues. As for many other agricultural field experiments, spatial differences between the experimental units is one of the major concerns in the analysis of data from the potato late blight trial. The aim of this thesis is to construct a statistical model which can be used to analyse the data collected from the series of potato late blight trials. We review existing methodologies for analysing ordinal data with mixed effects particularly those methods in the Bayesian framework. Using data collected from the potato late blight trials we develop a Bayesian hierarchical model for the analyses of repeatedly assessed ordinal scores with spatial effects, in particular the time dependence of the scores assessed on the same experimental units was modelled by a sigmoid logistic curve. Data collected from the potato late blight trials demonstrated the importance of spatial effects in agricultural field trials. These effects cannot be neglected when analysing such data. Although statistical methods can be refined to account for the complexity of the data, appropriate trial design still plays a central role in field experiments. / Accompanying dataset is at http://hdl.handle.net/2292/5240
373

Analyzing volatile compound measurements using traditional multivariate techniques and Bayesian networks : a thesis presented in partial fulfillment of the requirements for the degree of Master of Arts in Statistics at Massey University, Albany, New Zealand

Baldawa, Shweta Unknown Date (has links)
i Abstract The purpose of this project is to compare two statistical approaches, traditional multivariate analysis and Bayesian networks, for representing the relationship between volatile compounds in kiwifruit. Compound measurements were for individual vines which were progeny of an intercross. It was expected that groupings in the data (or compounds) would give some indication of the generic nature of the biochemical pathways. Data for this project was provided by the Flavour Biotech team at Plant and Food Research. This data contained many non-detected observations which were treated as zero and to deal with them, we looked for appropriate value of c for data transformation in log(x+c). The data is ‘large p small n’ paradigm – and has much in common with data, although it is not as extreme as microarray. Principal component analysis was done to select a subset of compounds that retained most of the multivariate structure for further analysis. The reduced set of data was analyzed by Cluster analysis and Bayesian network techniques. A heat map produced by Cluster analysis and a graphical representation of Bayesian networks were presented to scientists for their comments. According to them, the two graphs complemented each other; both graphs were useful in their own unique way. Along with clusters of compounds, clusters of genotypes were represented by the heat map which showed by how much a particular compound is present in each genotype while the relation among different compounds was seen from the Bayesian networks.
374

Qualified difference sets : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University, Albany, New Zealand

Byard, Kevin January 2009 (has links)
Qualified difference sets are a class of combinatorial configuration. The sets are related to the residue difference sets that were first discussed in detail in 1953 by Emma Lehmer. Qualified difference sets consist of a set of residues modulo an integer v and they possess attractive properties that suggest potential applications in areas such as image formation, signal processing and aperture synthesis. This thesis outlines the theory behind qualified difference sets and gives conditions for the existence and nonexistence of these sets in various cases. A special case of the qualified difference sets is the qualified residue difference sets. These consist of the set of nth power residues of certain types of prime. Necessary and sufficient conditions for the existence of qualified residue difference sets are derived and the precise conditions for the existence of these sets are given for n = 2, 4 and 6. Qualified residue difference sets are proved nonexistent for n = 8, 10, 12, 14 and 18. A generalisation of the qualified residue difference sets is introduced. These are the qualified difference sets composed of unions of cyclotomic classes. A cyclotomic class is defined for an integer power n and the results of an exhaustive computer search are presented for n = 4, 6, 8, 10 and 12. Two new families of qualified difference set were discovered in the case n = 8 and some isolated systems were discovered for n = 6, 10 and 12. An explanation of how qualified difference sets may be implemented in physical applications is given and potential applications are discussed.
375

Random effects models for ordinal data

Lee, Arier Chi-Lun January 2009 (has links)
One of the most frequently encountered types of data is where the response variables are measured on an ordinal scale. Although there have been substantial developments in the statistical techniques for the analysis of ordinal data, methods appropriate for repeatedly assessed ordinal data collected from field experiments are limited. A series of biennial field screening trials for evaluating cultivar resistance of potato to the disease, late blight, caused by the fungus Phytophthora infestans (Mont.) de Bary has been conducted by the New Zealand Institute of Crop and Food Research since 1983. In each trial, the progression of late blight was visually assessed several times during the planting season using a nine-point ordinal scale based on the percentage of necrotic tissues. As for many other agricultural field experiments, spatial differences between the experimental units is one of the major concerns in the analysis of data from the potato late blight trial. The aim of this thesis is to construct a statistical model which can be used to analyse the data collected from the series of potato late blight trials. We review existing methodologies for analysing ordinal data with mixed effects particularly those methods in the Bayesian framework. Using data collected from the potato late blight trials we develop a Bayesian hierarchical model for the analyses of repeatedly assessed ordinal scores with spatial effects, in particular the time dependence of the scores assessed on the same experimental units was modelled by a sigmoid logistic curve. Data collected from the potato late blight trials demonstrated the importance of spatial effects in agricultural field trials. These effects cannot be neglected when analysing such data. Although statistical methods can be refined to account for the complexity of the data, appropriate trial design still plays a central role in field experiments. / Accompanying dataset is at http://hdl.handle.net/2292/5240
376

Random effects models for ordinal data

Lee, Arier Chi-Lun January 2009 (has links)
One of the most frequently encountered types of data is where the response variables are measured on an ordinal scale. Although there have been substantial developments in the statistical techniques for the analysis of ordinal data, methods appropriate for repeatedly assessed ordinal data collected from field experiments are limited. A series of biennial field screening trials for evaluating cultivar resistance of potato to the disease, late blight, caused by the fungus Phytophthora infestans (Mont.) de Bary has been conducted by the New Zealand Institute of Crop and Food Research since 1983. In each trial, the progression of late blight was visually assessed several times during the planting season using a nine-point ordinal scale based on the percentage of necrotic tissues. As for many other agricultural field experiments, spatial differences between the experimental units is one of the major concerns in the analysis of data from the potato late blight trial. The aim of this thesis is to construct a statistical model which can be used to analyse the data collected from the series of potato late blight trials. We review existing methodologies for analysing ordinal data with mixed effects particularly those methods in the Bayesian framework. Using data collected from the potato late blight trials we develop a Bayesian hierarchical model for the analyses of repeatedly assessed ordinal scores with spatial effects, in particular the time dependence of the scores assessed on the same experimental units was modelled by a sigmoid logistic curve. Data collected from the potato late blight trials demonstrated the importance of spatial effects in agricultural field trials. These effects cannot be neglected when analysing such data. Although statistical methods can be refined to account for the complexity of the data, appropriate trial design still plays a central role in field experiments. / Accompanying dataset is at http://hdl.handle.net/2292/5240
377

Random effects models for ordinal data

Lee, Arier Chi-Lun January 2009 (has links)
One of the most frequently encountered types of data is where the response variables are measured on an ordinal scale. Although there have been substantial developments in the statistical techniques for the analysis of ordinal data, methods appropriate for repeatedly assessed ordinal data collected from field experiments are limited. A series of biennial field screening trials for evaluating cultivar resistance of potato to the disease, late blight, caused by the fungus Phytophthora infestans (Mont.) de Bary has been conducted by the New Zealand Institute of Crop and Food Research since 1983. In each trial, the progression of late blight was visually assessed several times during the planting season using a nine-point ordinal scale based on the percentage of necrotic tissues. As for many other agricultural field experiments, spatial differences between the experimental units is one of the major concerns in the analysis of data from the potato late blight trial. The aim of this thesis is to construct a statistical model which can be used to analyse the data collected from the series of potato late blight trials. We review existing methodologies for analysing ordinal data with mixed effects particularly those methods in the Bayesian framework. Using data collected from the potato late blight trials we develop a Bayesian hierarchical model for the analyses of repeatedly assessed ordinal scores with spatial effects, in particular the time dependence of the scores assessed on the same experimental units was modelled by a sigmoid logistic curve. Data collected from the potato late blight trials demonstrated the importance of spatial effects in agricultural field trials. These effects cannot be neglected when analysing such data. Although statistical methods can be refined to account for the complexity of the data, appropriate trial design still plays a central role in field experiments. / Accompanying dataset is at http://hdl.handle.net/2292/5240
378

Modelling of volcanic ashfall : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University, Albany, New Zealand

Lim, Leng Leng January 2006 (has links)
Modelling of volcanic ashfall has been attempted by volcanologists but very little work has been done by mathematicians. In this thesis we show that mathematical models can accurately describe the distribution of particulate materials that fall to the ground following an eruption. We also report on the development and analysis of mathematical models to calculate the ash concentration in the atmosphere during ashfall after eruptions. Some of these models have analytical solutions. The mathematical models reported on in this thesis not only describe the distribution of ashfall on the ground but are also able to take into account the effect of variation of wind direction with elevation. In order to model the complexity of the atmospheric flow, the atmosphere is divided into horizontal layers. Each layer moves steadily and parallel to the ground: the wind velocity components, particle settling speed and dispersion coefficients are assumed constant within each layer but may differ from layer to layer. This allows for elevation-dependent wind and turbulence profiles, as well as changing particle settling speeds, the last allowing the effects of the agglomeration of particles to be taken into account.
379

Qualified difference sets : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University, Albany, New Zealand

Byard, Kevin January 2009 (has links)
Qualified difference sets are a class of combinatorial configuration. The sets are related to the residue difference sets that were first discussed in detail in 1953 by Emma Lehmer. Qualified difference sets consist of a set of residues modulo an integer v and they possess attractive properties that suggest potential applications in areas such as image formation, signal processing and aperture synthesis. This thesis outlines the theory behind qualified difference sets and gives conditions for the existence and nonexistence of these sets in various cases. A special case of the qualified difference sets is the qualified residue difference sets. These consist of the set of nth power residues of certain types of prime. Necessary and sufficient conditions for the existence of qualified residue difference sets are derived and the precise conditions for the existence of these sets are given for n = 2, 4 and 6. Qualified residue difference sets are proved nonexistent for n = 8, 10, 12, 14 and 18. A generalisation of the qualified residue difference sets is introduced. These are the qualified difference sets composed of unions of cyclotomic classes. A cyclotomic class is defined for an integer power n and the results of an exhaustive computer search are presented for n = 4, 6, 8, 10 and 12. Two new families of qualified difference set were discovered in the case n = 8 and some isolated systems were discovered for n = 6, 10 and 12. An explanation of how qualified difference sets may be implemented in physical applications is given and potential applications are discussed.
380

q-series in number theory and combinatorics : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University, Albany, New Zealand

Lam, Heung Yeung January 2006 (has links)
Srinivasa Ramanujan (1887-1920) was one of the world's greatest mathematical geniuses. He work extensively in a branch of mathematics called "q-series". Around 1913, he found an important formula which now is known as Ramanujan's 1ψ1summation formula. The aim of this thesis is to investigate Ramanujan's 1ψ1summation formula and explore its applications to number theory and combinatorics. First, we consider several classical important results on elliptic functions and then give new proofs of these results using Ramanujan's 1ψ1 summation formula. For example, we will present a number of classical and new solutions for the problem of representing an integer as sums of squares (one of the most celebrated in number theory and combinatorics) in this thesis. This will be done by using q-series and Ramanujan's 1ψ1 summation formula. This in turn will give an insight into how Ramanujan may have proven many of his results, since his own proofs are often unknown, thereby increasing and deepening our understanding of Ramanujan's work.

Page generated in 0.1321 seconds