• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Condições de solubilidade p-ádica para formas aditivas de grau ímpar

Motinha, Juliana Paula Riani 22 July 2008 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2008. / Submitted by Jaqueline Oliveira (jaqueoliveiram@gmail.com) on 2008-12-12T14:41:01Z No. of bitstreams: 1 DISSERTACAO_2008_JulianaPaulaRianiMotinha.pdf: 387354 bytes, checksum: 3a786b255f6f8d805cb062e1ee31d4ed (MD5) / Approved for entry into archive by Georgia Fernandes(georgia@bce.unb.br) on 2009-02-19T17:01:29Z (GMT) No. of bitstreams: 1 DISSERTACAO_2008_JulianaPaulaRianiMotinha.pdf: 387354 bytes, checksum: 3a786b255f6f8d805cb062e1ee31d4ed (MD5) / Made available in DSpace on 2009-02-19T17:01:29Z (GMT). No. of bitstreams: 1 DISSERTACAO_2008_JulianaPaulaRianiMotinha.pdf: 387354 bytes, checksum: 3a786b255f6f8d805cb062e1ee31d4ed (MD5) / O presente trabalho é baseado nos artigos de Tietäväinen e Low, Pitman e Wolff, onde ambos investigam condições para solubilidade p-ádica de formas aditivas, em n variáveis, de grau k ímpar. É verificado para uma forma que, se n ≥ [(log 2)−1k log k], então esta forma possui zeros p-ádicos não triviais, para todo primo p. Posteriormente, estudamos sistemas de R formas de mesmo grau. Uma característica importante deste trabalho é a técnica de partição de matrizes e uma definição diferenciada de sistema normalizado, diferente da introduzida por Davenport e Lewis. Com essa nova abordagem, temos uma significativa melhora nos resultados obtidos por Davenport e Lewis. ________________________________________________________________________________________ ABSTRACT / This work is based on articles of Tietäväinen and Low, Pitman and Wolff, where both investigate conditions for p-ádic solubility from additive forms, in n variables, of odd degree k. It is checked for a form that, if n ≥ [(log 2)−1k log k], then this form has non-trivial p-ádics zeros, for any prime p. Subsequently, we studied systems of R forms with the same degree. An important feature of this work is the technique of matrices’ partition and a different definition of normalised system, different from that introduced by Davenport and Lewis. With this new approach, we have a significant improvement in the results obtained by Davenport and Lewis.

Page generated in 0.4556 seconds