Spelling suggestions: "subject:"matsumoto dieta funkcijos"" "subject:"matsumoto 1beta funkcijos""
1 |
Diskrečioji ribinė teorema Matsumoto dzeta funkcijai analizinių funkcijų erdvėje / A Discrete Limit Theorem for the Matsumoto Zeta-Function in the Space of Analytic FunctionsPaulauskas, Tomas 04 March 2009 (has links)
Tegul funkcija φ(s) s=σ+it, yra apibrėžta srityje σ>α+β+1 polinomine Oilerio sandauga. Magistro darbe įrodyta diskreti ribinė teorema analizinių funkcijų erdvėje H(D), funkcijai φ(s). Tarkime, kad h>0 toks fiksuotas skaičius, kad kuriems nors sveikiems k≠0 skaičius exp{2πk/h} yra racionalus, o B(H(D)) yra erdvės H(D) Borelio aibių klasė. Darbe įrodyta, kad tikimybinis matas silpnai konverguoja į vieno H(D) reikšmio atsitiktinio elemento skirstinį. / For σ>α+β+1, define the function φ(s), s=σ+it, by a polynomial Euler product. In our work, a discrete limit theorem in the space H(D) of analytic functions for the function φ(s) is proved. Suppose that h>0 is a fixed number such that for some integers k≠0 the number exp{2πk/h} is racional, and denote by B(H(D)) the class of Borel sets of the space H(D). Then we prove that the probability measure converges weakly to the distribution of one H(D)- valued random element.
|
Page generated in 0.054 seconds