• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Distinguishability of Public Keys and Experimental Validation: The McEliece Public-Keyed Cryptosystem

Unknown Date (has links)
As quantum computers continue to develop, they pose a threat to cryptography since many popular cryptosystems will be rendered vulnerable. This is because the security of most currently used asymmetric systems requires the computational hardness of the integer factorization problem, the discrete logarithm or the elliptic curve discrete logarithm problem. However, there are still some cryptosystems that resist quantum computing. We will look at code-based cryptography in general and the McEliece cryptosystem specifically. Our goal is to understand the structure behind the McEliece scheme, including the encryption and decryption processes, and what some advantages and disadvantages are that the system has to offer. In addition, using the results from Courtois, Finiasz, and Sendrier's paper in 2001, we will discuss a digital signature scheme based on the McEliece cryptosystem. We analyze one classical algebraic attack against the security analysis of the system based on the distinguishing problem whether the public key of the McEliece scheme is generated from a generating matrix of a binary Goppa code or a random binary matrix. The idea of the attack involves solving an algebraic system of equations and we examine the dimension of the solution space of the linearized system of equations. With the assistance from a paper in 2010 by Faugere, Gauthier-Umana, Otmani, Perret, Tillich, we will see the parameters needed for the intractability of the distinguishing problem. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection

Page generated in 0.0475 seconds