Spelling suggestions: "subject:"mean cost"" "subject:"jean cost""
1 |
Constructing Empirical Likelihood Confidence Intervals for Medical Cost Data with Censored ObservationsJeyarajah, Jenny Vennukkah 15 December 2016 (has links)
Medical cost analysis is an important part of treatment evaluation. Since resources are limited in society, it is important new treatments are developed with proper costconsiderations. The mean has been mostly accepted as a measure of the medical cost analysis. However, it is well known that cost data is highly skewed and the mean could be highly influenced by outliers. Therefore, in many situations the mean cost alone cannot offer complete information about medical costs. The quantiles (e.g., the first quartile, median and third quartile) of medical costs could better represent the typical costs paid by a group of individuals, and could provide additional information beyond mean cost.
For a specified patient population, cost estimates are generally determined from the beginning of treatments until death or end of the study period. A number of statistical methods have been proposed to estimate medical cost. Since medical cost data are skewed to the right, normal approximation based confidence intervals can have much lower coverage probability than the desired nominal level when the cost data are moderately or severely skewed. Additionally, we note that the variance estimators of the cost estimates are analytically complicated.
In order to address some of the above issues, in the first part of the dissertation we propose two empirical likelihood-based confidence intervals for the mean medical costs: One is an empirical likelihood interval (ELI) based on influence function, the other is a jackknife empirical likelihood (JEL) based interval. We prove that under very general conditions, −2log (empirical likelihood ratio) has an asymptotic standard chi squared distribution with one degree of freedom for mean medical cost. Also we show that the log-jackknife empirical likelihood ratio statistics follow standard χ2 distribution with one degree of freedom for mean medical cost.
In the second part of the dissertation, we propose an influence function-based empirical likelihood method to construct a confidence region for the vector of regression parameters in mean cost regression models with censored data. The proposed confidence region can be used to obtain a confidence interval for the expected total cost of a patient with given covariates. The new method has sound asymptotic property (Wilks Theorem).
In the third part of the dissertation we propose empirical likelihood method based on influence function to construct confidence intervals for quantile medical costs with censored data. We prove that under very general conditions, −2log (empirical likelihood ratio) has an asymptotic standard chi squared distribution with one degree of freedom for quantile medical cost. Simulation studies are conducted to compare coverage probabilities and interval lengths of the proposed confidence intervals with the existing confidence intervals. The proposed methods are observed to have better finite sample performances than existing methods. The new methods are also illustrated through a real example.
|
2 |
Statistical Inference for Costs and Incremental Cost-Effectiveness Ratios with Censored DataChen, Shuai 2012 May 1900 (has links)
Cost-effectiveness analysis is widely conducted in the economic evaluation of new treatment options. In many clinical and observational studies of costs, data are often censored. Censoring brings challenges to both medical cost estimation and cost-effectiveness analysis. Although methods have been proposed for estimating the mean costs with censored data, they are often derived from theory and it is not always easy to understand how these methods work. We provide an alternative method for estimating the mean cost more efficiently based on a replace-from-the-right algorithm, and show that this estimator is equivalent to an existing estimator based on the inverse probability weighting principle and semiparametric efficiency theory. Therefore, we provide an intuitive explanation to a theoretically derived mean cost estimator.
In many applications, it is also important to estimate the survival function of costs. We propose a generalized redistribute-to-the right algorithm for estimating the survival function of costs with censored data, and show that it is equivalent to a simple weighted survival estimator of costs based on inverse probability weighting techniques. Motivated by this redistribute-to-the-right principle, we also develop a more efficient survival estimator for costs, which has the desirable property of being monotone, and more efficient, although not always consistent. We conduct simulation to compare our method with some existing survival estimators for costs, and find the bias seems quite small. Thus, it may be considered as a candidate for survival estimator for costs in a real setting when the censoring is heavy and cost history information is available.
Finally, we consider one special situation in conducting cost-effectiveness analysis, when the terminating events for survival time and costs are different. Traditional methods for statistical inference cannot deal with such data. We propose a new method for deriving the confidence interval for the incremental cost-effectiveness ratio under this situation, based on counting process and the general theory for missing data process. The simulation studies show that our method performs very well for some practical settings. Our proposed method has a great potential of being applied to a real setting when different terminating events exist for survival time and costs.
|
Page generated in 0.0533 seconds