Spelling suggestions: "subject:"mean regression"" "subject:"jean regression""
1 |
Nonparametric statistical inference for dependent censored dataEl Ghouch, Anouar 05 October 2007 (has links)
A frequent problem that appears in practical survival data analysis is censoring. A censored observation occurs when the observation of the event time (duration or survival time) may be prevented by the occurrence of an earlier competing event (censoring time). Censoring may be due to different causes. For example, the loss of some subjects under study, the end of the follow-up period, drop out or the termination of the study and the limitation in the sensitivity of a measurement instrument. The literature about censored data focuses on the i.i.d. case. However in many real applications the data are collected sequentially in time or space and so the assumption of independence in such case does not hold. Here we only give some typical examples from the literature involving correlated data which are subject to censoring. In the clinical trials domain it frequently happens that the patients from the same hospital have correlated survival times due to unmeasured variables like the quality of the hospital equipment. Censored correlated data are also a common problem in the domain of environmental and spatial (geographical or ecological) statistics. In fact, due to the process being used in the data sampling procedure, e.g. the analytical equipment, only the measurements which exceed some thresholds, for example the method detection limits or the instrumental detection limits, can be included in the data analysis. Many other examples can also be found in other fields like econometrics and financial statistics. Observations on duration of unemployment e.g., may be right censored and are typically correlated. When the data are not independent and are subject to censoring, estimation and inference become more challenging mathematical problems with a wide area of applications. In this context, we propose here some new and flexible tools based on a nonparametric approach. More precisely, allowing dependence between individuals, our main contribution to this domain concerns the following aspects. First, we are interested in developing more suitable confidence intervals for a general class of functionals of a survival distribution via the empirical likelihood method. Secondly, we study the problem of conditional mean estimation using the local linear technique. Thirdly, we develop and study a new estimator of the conditional quantile function also based on the local linear method. In this dissertation, for each proposed method, asymptotic results like consistency and asymptotic normality are derived and the finite sample performance is evaluated in a simulation study.
|
2 |
Nonparametric statistical inference for dependent censored dataEl Ghouch, Anouar 05 October 2007 (has links)
A frequent problem that appears in practical survival data analysis is censoring. A censored observation occurs when the observation of the event time (duration or survival time) may be prevented by the occurrence of an earlier competing event (censoring time). Censoring may be due to different causes. For example, the loss of some subjects under study, the end of the follow-up period, drop out or the termination of the study and the limitation in the sensitivity of a measurement instrument. The literature about censored data focuses on the i.i.d. case. However in many real applications the data are collected sequentially in time or space and so the assumption of independence in such case does not hold. Here we only give some typical examples from the literature involving correlated data which are subject to censoring. In the clinical trials domain it frequently happens that the patients from the same hospital have correlated survival times due to unmeasured variables like the quality of the hospital equipment. Censored correlated data are also a common problem in the domain of environmental and spatial (geographical or ecological) statistics. In fact, due to the process being used in the data sampling procedure, e.g. the analytical equipment, only the measurements which exceed some thresholds, for example the method detection limits or the instrumental detection limits, can be included in the data analysis. Many other examples can also be found in other fields like econometrics and financial statistics. Observations on duration of unemployment e.g., may be right censored and are typically correlated. When the data are not independent and are subject to censoring, estimation and inference become more challenging mathematical problems with a wide area of applications. In this context, we propose here some new and flexible tools based on a nonparametric approach. More precisely, allowing dependence between individuals, our main contribution to this domain concerns the following aspects. First, we are interested in developing more suitable confidence intervals for a general class of functionals of a survival distribution via the empirical likelihood method. Secondly, we study the problem of conditional mean estimation using the local linear technique. Thirdly, we develop and study a new estimator of the conditional quantile function also based on the local linear method. In this dissertation, for each proposed method, asymptotic results like consistency and asymptotic normality are derived and the finite sample performance is evaluated in a simulation study.
|
3 |
Estimation non-paramétrique du quantile conditionnel et apprentissage semi-paramétrique : applications en assurance et actuariat / Nonparametric estimation of conditional quantile and semi-parametric learning : applications on insurance and actuarial dataKnefati, Muhammad Anas 19 November 2015 (has links)
La thèse se compose de deux parties : une partie consacrée à l'estimation des quantiles conditionnels et une autre à l'apprentissage supervisé. La partie "Estimation des quantiles conditionnels" est organisée en 3 chapitres : Le chapitre 1 est consacré à une introduction sur la régression linéaire locale, présentant les méthodes les plus utilisées, pour estimer le paramètre de lissage. Le chapitre 2 traite des méthodes existantes d’estimation nonparamétriques du quantile conditionnel ; Ces méthodes sont comparées, au moyen d’expériences numériques sur des données simulées et des données réelles. Le chapitre 3 est consacré à un nouvel estimateur du quantile conditionnel et que nous proposons ; Cet estimateur repose sur l'utilisation d'un noyau asymétrique en x. Sous certaines hypothèses, notre estimateur s'avère plus performant que les estimateurs usuels.<br> La partie "Apprentissage supervisé" est, elle aussi, composée de 3 chapitres : Le chapitre 4 est une introduction à l’apprentissage statistique et les notions de base utilisées, dans cette partie. Le chapitre 5 est une revue des méthodes conventionnelles de classification supervisée. Le chapitre 6 est consacré au transfert d'un modèle d'apprentissage semi-paramétrique. La performance de cette méthode est montrée par des expériences numériques sur des données morphométriques et des données de credit-scoring. / The thesis consists of two parts: One part is about the estimation of conditional quantiles and the other is about supervised learning. The "conditional quantile estimate" part is organized into 3 chapters. Chapter 1 is devoted to an introduction to the local linear regression and then goes on to present the methods, the most used in the literature to estimate the smoothing parameter. Chapter 2 addresses the nonparametric estimation methods of conditional quantile and then gives numerical experiments on simulated data and real data. Chapter 3 is devoted to a new conditional quantile estimator, we propose. This estimator is based on the use of asymmetrical kernels w.r.t. x. We show, under some hypothesis, that this new estimator is more efficient than the other estimators already used.<br> The "supervised learning" part is, too, with 3 chapters: Chapter 4 provides an introduction to statistical learning, remembering the basic concepts used in this part. Chapter 5 discusses the conventional methods of supervised classification. Chapter 6 is devoted to propose a method of transferring a semiparametric model. The performance of this method is shown by numerical experiments on morphometric data and credit-scoring data.
|
Page generated in 0.0588 seconds