• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Portfolio Optimization under Value at Risk, Average Value at Risk and Limited Expected Loss Constraints

Gambrah, Priscilla S.N January 2014 (has links)
<p>In this thesis we investigate portfolio optimization under Value at Risk, Average Value at Risk and Limited expected loss constraints in a framework, where stocks follow a geometric Brownian motion. We solve the problem of minimizing Value at Risk and Average Value at Risk, and the problem of finding maximal expected wealth with Value at Risk, Average Value at Risk, Limited expected loss and Variance constraints. Furthermore, in a model where the stocks follow an exponential Ornstein-Uhlenbeck process, we examine portfolio selection under Value at Risk and Average Value at Risk constraints. In both geometric Brownian motion (GBM) and exponential Ornstein-Uhlenbeck (O.U) models, the risk-reward criterion is employed and the optimal strategy is found. Secondly, the Value at Risk, Average Value at Risk and Variance is minimized subject to an expected return constraint. By running numerical experiments we illustrate the effect of Value at Risk, Average Value at Risk, Limited expected loss and Variance on the optimal portfolios. Furthermore, in the exponential O.U model we study the effect of mean-reversion on the optimal strategies. Lastly we compare the leverage in a portfolio where the stocks follow a GBM model to that of a portfolio where the stocks follow the exponential O.U model.</p> / Master of Science (MSc)

Page generated in 0.0626 seconds