• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A comparison of item exposure control procedures with the generalized partial credit model

Sanchez, Edgar Isaac 13 January 2010 (has links)
To enhance test security of high stakes tests, it is vital to understand the way various exposure control strategies function under various IRT models. To that end the present dissertation focused on the performance of several exposure control strategies under the generalized partial credit model with an item pool of 100 and 200 items. These procedures are relatively easy to implement and have shown promise as an alternative to more complex exposure control strategies. Through unique algorithms these procedures select an item for administration from a subset of items in the item pool. The five procedures examined for efficacy were the modified within .10 logits, restricted modified within .10 logits, randomesque, restricted randomesque, and progressive restricted procedures. The modified within .10 logits, restricted modified within .10 logits, and randomesque, and restricted randomesque procedures select an item for administration from a subset of optimal items. To test the effect of the number of items available for selection in this subset, 3, 6, and 9 items were made available for selection in these procedures. Maximum information item selection was used as a base line, no exposure control, condition. The progressive restricted, restricted randomesque, and restricted modified within .10 logits procedures were found to optimally protect test security while not significantly degrading measurement precision. The restricted forms of the randomesque and modified within .10 logits procedures proved superior to their base procedures, particularly in controlling average maximum exposure rate. The incrementation of item group size in the modified within .10 logits, restricted modified within .10 logits, and randomesque, and restricted randomesque procedures demonstrated that increasing the item group size provided better test security while not significantly degrading measurement precision. Additionally, in general, the increase of the item pool size from 100 to 200 improved measurement precision and test security. Implications towards practical application are discussed and directions for future research are suggested. / text
2

ON-MACHINE MEASUREMENT OF WORKPIECE FORM ERRORS IN ULTRAPRECISION MACHINING

Gomersall, Fiona January 2016 (has links)
Ultraprecision single point diamond turning is required to produce parts with sub-nanometer surface roughness and sub-micrometer surface profiles tolerances. These parts have applications in the optics industry, where tight form accuracy is required while achieving high surface finish quality. Generally, parts can be polished to achieve the desired finish, but then the form accuracy can easily be lost in the process rendering the part unusable. Currently, most mid to low spatial frequency surface finish errors are inspected offline. This is done by physically removing the workpiece from the machining fixture and mounting the part in a laser interferometer. This action introduces errors in itself through minute differences in the support conditions of the over constrained part on a machine as compared to the mounting conditions used for part measurement. Once removed, the fixture induced stresses and the part’s internal residual stresses relax and change the shape of the generally thin parts machined in these applications. Thereby, the offline inspection provides an erroneous description of the performance of the machine. This research explores the use of a single, high resolution, capacitance sensor to quickly and qualitatively measure the low to mid spatial frequencies on the workpiece surface, while it is mounted in a fixture on a standard ultraprecision single point diamond turning machine after a standard facing operation. Following initial testing, a strong qualitative correlation exists between the surface profiling on a standard offline system and this online measuring system. Despite environmental effects and the effects of the machine on the measurement system, the capacitive system with some modifications and awareness of its measurement method is a viable option for measuring mid to low spatial frequencies on a workpiece surface mounted on an ultraprecision machine with a resolution of 1nm with an error band of ±5nm with a 20kHz bandwidth. / Thesis / Master of Applied Science (MASc)

Page generated in 0.0927 seconds