• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Benchmarking measurement-based quantum computation on graph states

Qin, Zhangjie 26 August 2024 (has links)
Measurement-based quantum computation is a form of quantum computing that operates on a prepared entangled graph state, typically a cluster state. In this dissertation, we will detail the creation of graph states across various physical platforms using different entangling gates. We will then benchmark the quality of graph states created with error-prone interactions through quantum wire teleportation experiments. By leveraging underlying symmetry, we will design graph states as measurement-based quantum error correction codes to protect against perturbations, such as ZZ crosstalk in quantum wire teleportation. Additionally, we will explore other measurement-based algorithms used for the quantum simulation of time evolution in fermionic systems, using the Kitaev model and the Hubbard model as examples. / Doctor of Philosophy / A quantum computer refers to a device that performs general computational functions relying on logic gates using units dominated by microscopic quantum properties. The fundamental difference between quantum computers and classical computers lies in the distinction be- tween the basic quantum unit, the qubit, and the classical computational unit, the bit. Both qubits and bits can exist in states 0 and 1. However, qubits possess two characteristics that classical computational units do not: superposition and entanglement. Superposition allows a qubit to exist in a combination of both states 0 and 1 simultaneously. Entanglement refers to the phenomenon where qubits interact and form an inseparable unified state. The effec- tive utilization of these unique properties enables quantum computers to exhibit capabilities far surpassing those of classical computers. Analogous to classical computers, qubits can be interconnected in a circuit-like manner sim- ilar to classical bits, forming an architecture known as circuit-based quantum computation (CBQC). However, given the unique properties of quantum systems, particularly entan- glement, a novel architecture called measurement-based quantum computing (MBQC) can also be designed. MBQC relies on pre-entangled graph states, usually cluster states, and only requires single-qubit measurements to implement quantum algorithms. The MBQC framework also includes a universal gate set, similar to other quantum computing architec- tures like CBQC. In this dissertation, we will introduce the creation of graph states and the implementation of measurement-based quantum algorithms.
2

Relações monogâmicas entre estados multipartidos e efeitos de memória em computação quântica baseada em medidas projetivas /

Filenga, Daví. January 2020 (has links)
Orientador: Felipe Fernandes Fanchini / Resumo: Na presente Tese realizou-se um estudo acerca das relações monogâmicas entre emaranhamento de formação (EF) e discórdia quântica (DQ) para sistemas quânticos multipartidos, bem como um estudo acerca da dinâmica dissipativa de operações lógicas de 1 (portas NOT e Z) e 2 (porta CNOT) qubits para uma computação quântica baseada em medidas projetivas (MBQC). Como resultado, expressões as quais generalizam relações de conservação entre EF e DQ puderam ser deduzidas, bem como relações de distribuição de DQ para sistemas de n partes. Ademais, ampliando os estudos referentes a sistemas multipartidos, uma pesquisa a respeito da influência dos canais amplitude damping (AD) e phase damping (PD) em uma MBQC considerando ambientes altamente não-Markovianos pôde ser desenvolvida. Nesse sentido, uma medida denominada fidelidade média (Fm) foi então proposta, a partir da qual expressões analíticas puderam ser deduzidas para os canais em questão, e sendo demonstrado que Fm resulta em valores idênticos para as portas X e Z. Além do mais, também foi possível realizar um estudo acerca dos tempos ótimos das medidas, segundo o qual pôde-se concluir que sua rápida execução não necessariamente implica em melhores resultados, tampouco sua lenta execução não necessariamente implica em piores. Nesse contexto, pôde-se também demonstrar que para o canal AD o conhecimento do mapa dissipativo já é o suficiente para intuitivamente determinar os melhores tempos de medidas, sendo que o mesmo não necessariamen... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: In this work a study about the monogamous relations between entanglement of formation (EF) and quantum discord (QD) for multipartite quantum systems, as well the dissipative dynamics of 1 (NOT and Z gates) and 2 (CNOT gate) qubits for a measurement-based quantum computation (MBQC) could be developed. As a result, expressions which generalize conservation laws between EF and DQ could be deduced, as well as DQ distribution laws for n part quantum systems. In addition, expanding the multipartite systems studies, a research about the influence of the amplitude damping (AD) and phase damping (PD) channels in an MBQC considering highly non-Markovian environments also could be developed. In this sense, a measure called average gate fidelity (Fm) was proposed, from which we deduce analytical expressions for the channels and show that it is identical for the X and Z gates. In addition, we conducted a study of the optimal measurement times, where we conclude that neither fast application of the projective measurements necessarily implies better results, nor slow application necessarily implies worse results. Furthermore, it was also possible to demonstrate that while for the AD the knowledge of the dissipative map is sufficient to determine the best measurement times, the same is not necessarily true for the PD, where the time of the set of measures becomes crucial since a phase error in one qubit can fix the phase error that takes place in another. Finally, a study was carried out on ... (Complete abstract click electronic access below) / Doutor

Page generated in 0.1367 seconds