Spelling suggestions: "subject:"bimechanical properties"" "subject:"bymechanical properties""
71 |
Studies of polystyrene (PS) high density polyethylene (HDPE) and PS/HDPE/wood composites from an extrusion process : mechanical properties, rheological characterization and morphologyXu, Bin 15 March 1999 (has links)
Graduation date: 1999
|
72 |
Mechanical properties of Nb-Ti composite superconducting wiresLiu, He 15 March 1991 (has links)
Mechanical properties of Nb-Ti composite superconducting wires were tested at
room temperature. The results were analysed using simple composite theory, the rule
of mixtures. The objective is to predict the mechanical properties of Nb-Ti
superconducting composite wires as a function of volume ratio and geometry of the
components, the composite wire size and the effect of heat treatment at final drawing
wire sizes. To understand the mechanical behaviors of the Nb-Ti composite,
mechanical testing of the individual composite components, Nb-Ti filament and copper
matrix, was performed, and the geometry of the composite was also studied. The
results indicate that for the monofilamentary composite simple composite theory with
two components, Nb-Ti filament and copper matrix, can be used as the prediction of
the UTS of the composite. For the multifilamentary composite three components make
up the composites; a high strength Nb-Ti fiber, a low strength, high ductility bulk
copper matrix and a mid-strength (between the Nb-Ti fiber's and bulk copper matrix's)
interfilamentary copper matrix. After heavy cold work the UTS of Nb-Ti filaments and
bulk copper matrix in the composite saturate, while the UTS of the interfilamentary
copper increases as the interfilamentary spacing decreases. The UTS of the
interfilamentary copper matrix as a linear function of the reciprocal of interfilamentary
spacing is found. The controlling parameters in the manufacturing which determine the
mechanical properties of Nb-Ti composite superconducting wires include
superconductor to composite ratio, UTS of the Nb-Ti filament and copper matrix, wire
final drawing size, and geometry of the composite such as size and number of the
filaments, interfilamentary spacing, volume fraction of fringe and core bulk copper in
multifilamentary composites. / Graduation date: 1991
|
73 |
Phase segregation study of thermoplastic polyurethanesMace, Tamara Lee 01 December 2003 (has links)
No description available.
|
74 |
Quantitative characterization of damage evolution in an Al-Si-Mg base cast alloyDighe, Manish D. 08 1900 (has links)
No description available.
|
75 |
Stainless steel hollow sphere foams : processing and propertiesClark, Justin Lewis 12 1900 (has links)
No description available.
|
76 |
Micromechancal modeling of dual-phase steel using a rate-dependent crystal plasticity modelMahmoody, Sam. January 2007 (has links)
Dual-phase (DP) steels consisting of a ferrite matrix with dispersed martensite particles have attracted a significant interest due to their combination of high work hardening and ductility. A great deal of experimental work has been done to obtain a better comprehension of the relation of their mechanical behaviour to their microstructural characteristics. In the present work, a micromechanical study of ferrite-martensite DP steels is conducted. The deformation of ferrite is described by a rate-dependent crystal plasticity theory, which relates the stress-strain field equations on the grain level to the macroscopic behaviour of the material. The crystal plasticity theory assumes that slip is the only deformation mechanism. Martensite, on the other hand, is considered an elastic-plastic isotropic solid. The interfaces of the grains are taken into account through an idealized form of grain boundaries. A FORTRAN program was coupled with the finite element method to solve the stress equations of the crystal plasticity. Including the grain boundaries made it possible to examine the effect of ferrite grain size on the strength of the material. It is shown that by decreasing the grain size, the yield stress increases according to Hall-Petch equation. Additionally, the effects of the volume fraction of martensite (Vm) on the onset strain, i.e. the strain at which martensite deforms plastically, and of the distribution of martensite on the stress are studied. The former showed that the onset strain of the DP steel declines linearly with increasing Vm up to 36%, beyond which the onset strain becomes independent of V m. The latter revealed that when martensite particles are formed as islands in the ferrite grains, the material exhibits higher strength and hardening rate; compared to when martensite is distributed as large blocks among the ferrite grains.
|
77 |
Micromechancal modeling of dual-phase steel using a rate-dependent crystal plasticity modelMahmoody, Sam. January 2007 (has links)
No description available.
|
78 |
Spherical nanoindentation protocols for extracting microscale mechanical properties in viscoelastic materialsAbba, Mohammed Tahir 07 January 2016 (has links)
Nanoindentation has a high load resolution, depth sensing capabilities, and can be used to characterize the local mechanical behavior in material systems with heterogeneous microstructures. Recently nanoindentation has been used to extract useful stress-strain curves, primarily in hard materials such as metals and ceramics. To apply these indentation stress-strain methods to polymer composites, we have to first develop analysis techniques for materials that exhibit viscoelasticity. In a lot of current research the viscoelastic material properties are extracted after the material has been deformed enough to initiate plasticity and in some cases the time dependence of the deformation is ignored. This doesn’t give an accurate representation of the material properties of the undeformed sample or the local deformation behavior of the material. This dissertation develops analysis protocols to extract stress-strain curves and viscoelastic properties from the load-displacement data generated from spherical nanoindentation on materials exhibiting time-dependent response at room temperature. Once these protocols are developed they can then be applied, in the future, to study viscoelastic and viscoplastic properties of various mesoscale constituents of composite material systems. These new protocols were developed and tested on polymethyl methacrylate, polycarbonate, low-density polyethylene, and the bio-polymer chitosan. The properties extracted were consistent under different conditions and we were able to produce stress-strain curves for different loading rates and different indenter tip sizes. This dissertation demonstrates that a set of protocols can be used to reliably investigate the mechanical properties and deformation behavior of time-dependent materials using nanoindentation.
|
79 |
Polydiacetylene single crystal fibresGaliotis, Constantine January 1982 (has links)
No description available.
|
80 |
DESIGN AND VISCOELASTOPLASTIC CHARACTERIZATION OF A LIME-DUNE SAND-ASPHALT MIX (REPLACING AGGREGATE, MATERIAL LAWS, CREEP COMPLIANCE, RUTTING).SABBAGH, ABDULGHANY OMAR. January 1986 (has links)
Viscoelastic and viscoelastoplastic characterization of pavement materials by means of simple testing and simple equipment is of great concern to pavement technologists. Another area of great concern is the replacement of premium aggregates by local materials after improving the engineering properties of the local materials. Such replacement is for the avoidance of the high costs of hauling the well-graded aggregates whose resources are also being depleted. These two research areas were combined in this study. A uniformly graded dune sand which is abundant in desert-like areas was upgraded with hydrated lime and stabilized with asphalt to improve its engineering properties. By variation of some of the mix design variables, a mix that complied with Marshall and Hveem stability criteria was produced. The effect of lime on the engineering properties of the mix was studied, and substantial improvements due to the addition of lime were observed. A mix that contained 10% Type S lime was found to have engineering properties that were comparable with those of conventional asphaltic concrete. Also, the effect of lime on the thermorheological, thermal, and elastic properties of bituminous mixes in general was studied. In addition to complying with the above-mentioned stability criteria, the lime-sand-asphalt mix was characterized by creep compliance, over wide ranges of time and temperature, so that the mix is available for thickness design by both the empirical and the theoretical methods of pavement design. New, simple equipment by which repeated as well as constant load creep tests can be easily performed was introduced and used to develop a viscoelastic-plastic constitutive law of the designed lime-sand-asphalt mix. Both the equipment and the testing are simple and gave repeatable measurements. Models for the elastic, plastic, viscoelastic and viscoplastic responses of the designed mix were derived from measurements taken by this equipment and by using computerized regression analysis techniques. Generalized models for the viscoelastic strain during the N-th loading and the N-th recovery period were developed. A FORTRAN computer program was written for computing the four strain components mentioned above separately, and for computing the total strain component for large numbers of load repetitions.
|
Page generated in 0.0966 seconds